The polygenic architecture of left ventricular mass mirrors the clinical epidemiology

[1]  D. Levy,et al.  Left Ventricular Mass and Incidence of Coronary Heart Disease in an Elderly Cohort , 2020 .

[2]  P. Munroe,et al.  Genome-Wide Analysis of Left Ventricular Image-Derived Phenotypes Identifies Fourteen Loci Associated With Cardiac Morphogenesis and Heart Failure Development , 2019, Circulation.

[3]  Matthew S. Lebo,et al.  The eMERGE genotype set of 83,717 subjects imputed to ~40 million variants genome wide and association with the herpes zoster medical record phenotype , 2018, Genetic epidemiology.

[4]  Laura J. Scott,et al.  Trans-ethnic association study of blood pressure determinants in over 750,000 individuals , 2018, Nature Genetics.

[5]  B. Psaty,et al.  Coronary Heart Disease Genetic Risk Score Predicts Cardiovascular Disease Risk in Men, Not Women: The Multi-Ethnic Study of Atherosclerosis , 2018, Circulation. Genomic and precision medicine.

[6]  Shu Ye,et al.  Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults , 2018, Journal of the American College of Cardiology.

[7]  William K. Thompson,et al.  A study paradigm integrating prospective epidemiologic cohorts and electronic health records to identify disease biomarkers , 2018, Nature Communications.

[8]  P. Visscher,et al.  Meta-analysis of genome-wide association studies for height and body mass index in ∼700,000 individuals of European ancestry , 2018, bioRxiv.

[9]  M. Kanai,et al.  Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases , 2018, Nature Genetics.

[10]  S. Yusuf,et al.  Penetrance of Polygenic Obesity Susceptibility Loci across the Body Mass Index Distribution. , 2017, American journal of human genetics.

[11]  N. Cox,et al.  Evaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health record , 2017, PloS one.

[12]  Giovanni Malerba,et al.  Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes , 2017, Nature Genetics.

[13]  Jie Huang,et al.  Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function , 2017, The Journal of clinical investigation.

[14]  William K. Thompson,et al.  Investigating the Genetic Architecture of the PR Interval Using Clinical Phenotypes , 2017, Circulation. Cardiovascular genetics.

[15]  William K. Thompson,et al.  Defining a Contemporary Ischemic Heart Disease Genetic Risk Profile Using Historical Data , 2016, Circulation. Cardiovascular genetics.

[16]  Alan M. Kwong,et al.  Next-generation genotype imputation service and methods , 2016, Nature Genetics.

[17]  J. Witte,et al.  Determining Which Phenotypes Underlie a Pleiotropic Signal , 2016, Genetic epidemiology.

[18]  Hae Kyung Im,et al.  Survey of the Heritability and Sparse Architecture of Gene Expression Traits across Human Tissues , 2016, bioRxiv.

[19]  Po-Ru Loh,et al.  A Robust Example of Collider Bias in a Genetic Association Study. , 2016, American journal of human genetics.

[20]  J. Danesh,et al.  A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease , 2016 .

[21]  Tamara S. Roman,et al.  New genetic loci link adipose and insulin biology to body fat distribution , 2014, Nature.

[22]  Steven F. Lehrer,et al.  Cohort of birth modifies the association between FTO genotype and BMI , 2014, Proceedings of the National Academy of Sciences.

[23]  Joshua C. Denny,et al.  R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment , 2014, Bioinform..

[24]  Melissa A. Basford,et al.  Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data , 2013, Nature Biotechnology.

[25]  Melissa A. Basford,et al.  The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future , 2013, Genetics in Medicine.

[26]  Xiang Zhou,et al.  Polygenic Modeling with Bayesian Sparse Linear Mixed Models , 2012, PLoS genetics.

[27]  O. Delaneau,et al.  Supplementary Information for ‘ Improved whole chromosome phasing for disease and population genetic studies ’ , 2012 .

[28]  David Levine,et al.  A high-performance computing toolset for relatedness and principal component analysis of SNP data , 2012, Bioinform..

[29]  J. Marchini,et al.  Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.

[30]  M. Stephens,et al.  Genome-wide Efficient Mixed Model Analysis for Association Studies , 2012, Nature Genetics.

[31]  Dana C Crawford,et al.  Pitfalls of merging GWAS data: lessons learned in the eMERGE network and quality control procedures to maintain high data quality , 2011, Genetic epidemiology.

[32]  P. Visscher,et al.  Estimating missing heritability for disease from genome-wide association studies. , 2011, American journal of human genetics.

[33]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[34]  P. Visscher,et al.  Common SNPs explain a large proportion of heritability for human height , 2011 .

[35]  Marylyn D. Ritchie,et al.  PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations , 2010, Bioinform..

[36]  P. Visscher,et al.  Common polygenic variation contributes to risk of schizophrenia and bipolar disorder , 2009, Nature.

[37]  D. Roden,et al.  Development of a Large‐Scale De‐Identified DNA Biobank to Enable Personalized Medicine , 2008, Clinical pharmacology and therapeutics.

[38]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[39]  Richard B Devereux,et al.  Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardio , 2005, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[40]  W. Kannel Left ventricular hypertrophy as a risk factor: the Framingham experience , 1991, Journal of hypertension. Supplement : official journal of the International Society of Hypertension.

[41]  D. Levy,et al.  Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. , 1990, The New England journal of medicine.

[42]  D. Levy,et al.  Association of echocardiographic left ventricular mass with body size, blood pressure and physical activity (the Framingham Study). , 1990, The American journal of cardiology.

[43]  D. Levy,et al.  Left ventricular mass and incidence of coronary heart disease in an elderly cohort. The Framingham Heart Study. , 1989, Annals of internal medicine.

[44]  J. C. Christiansen,et al.  Echocardiographically detected left ventricular hypertrophy: prevalence and risk factors. The Framingham Heart Study. , 2020, Annals of internal medicine.