Room temperature deposition of homogeneous, highly transparent and conductive Al-doped ZnO films by reactive high power impulse magnetron sputtering

[1]  D. Mckenzie,et al.  Duty cycle control in reactive high-power impulse magnetron sputtering of hafnium and niobium , 2016 .

[2]  D. Mckenzie,et al.  The role of pulse length in target poisoning during reactive HiPIMS: application to amorphous HfO2 , 2015 .

[3]  K. Ellmer,et al.  Analytical model of electron transport in polycrystalline, degenerately doped ZnO films , 2014 .

[4]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[5]  K. Ellmer,et al.  The impact of negative oxygen ion bombardment on electronic and structural properties of magnetron sputtered ZnO:Al films , 2013 .

[6]  S. Migot,et al.  Near-room temperature single-domain epitaxy of reactively sputtered ZnO films , 2013 .

[7]  R. Brinkmann,et al.  A phenomenological model for the description of rotating spokes in HiPIMS discharges , 2013, 1305.5354.

[8]  U. Rau,et al.  Ion beam treatment of functional layers in thin-film silicon solar cells , 2013 .

[9]  G. Popa,et al.  Control of aluminum doping of ZnO:Al thin films obtained by high-power impulse magnetron sputtering , 2012 .

[10]  S. Konstantinidis,et al.  Deposition of titanium oxide films by reactive High Power Impulse Magnetron Sputtering (HiPIMS): Influence of the peak current value on the transition from metallic to poisoned regimes , 2012 .

[11]  K. Ellmer,et al.  Reactive magnetron sputtering of transparent conductive oxide thin films: Role of energetic particle (ion) bombardment , 2012 .

[12]  O. Sanchéz,et al.  Influence of the oxygen partial pressure and post-deposition annealing on the structure and optical properties of ZnO films grown by dc magnetron sputtering at room temperature , 2012 .

[13]  Montri Aiempanakit Reactive High Power Impulse Magnetron Sputtering of Metal Oxides , 2011 .

[14]  J. Pierson,et al.  Influence of the nanoscale structural features on the properties and electronic structure of Al-doped ZnO thin films: An X-ray absorption study , 2011 .

[15]  K. Ellmer,et al.  The influence of the target age on laterally resolved ion distributions in reactive planar magnetron sputtering , 2011 .

[16]  D. Horwat Compression and strong rarefaction in high power impulse magnetron sputtering discharges , 2010 .

[17]  F. Munnik,et al.  Establishing the mechanism of thermally induced degradation of ZnO:Al electrical properties using synchrotron radiation , 2010 .

[18]  Joakim Andersson,et al.  On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films , 2010 .

[19]  J. Bradley,et al.  Short- and long-term plasma phenomena in a HiPIMS discharge , 2010 .

[20]  Anderson Janotti,et al.  Fundamentals of zinc oxide as a semiconductor , 2009 .

[21]  D. Depla,et al.  Magnetron sputter deposition: Linking discharge voltage with target properties , 2009 .

[22]  W. Möller,et al.  Achieving high free electron mobility in ZnO:Al thin films grown by reactive pulsed magnetron sputtering , 2009 .

[23]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[24]  E. Wallin,et al.  Hysteresis-free reactive high power impulse magnetron sputtering , 2008 .

[25]  F. Ruske,et al.  Reactive deposition of aluminium-doped zinc oxide thin films using high power pulsed magnetron sputtering , 2008 .

[26]  Bernd Rech,et al.  Transparent conductive zinc oxide : basics and applications in thin film solar cells , 2008 .

[27]  J. Andersson,et al.  High power impulse magnetron sputtering : Current-voltage-time characteristics indicate the onset of sustained self-sputtering , 2007 .

[28]  Helmut Stiebig,et al.  Transparent conducting oxide films for thin film silicon photovoltaics , 2007 .

[29]  J. Pierson,et al.  Magnetron sputtering of NASICON (Na3Zr2Si2PO12) thin films: Part II: A novel approach , 2007 .

[30]  A. Billard,et al.  Effects of substrate position and oxygen gas flow rate on the properties of ZnO: Al films prepared by reactive co-sputtering , 2007 .

[31]  E. Choi,et al.  High work function of Al-doped zinc-oxide thin films as transparent conductive anodes in organic light-emitting devices , 2006 .

[32]  D. Depla,et al.  Biaxial alignment in sputter deposited thin films , 2006 .

[33]  J. Schneider,et al.  A novel pulsed magnetron sputter technique utilizing very high target power densities , 1999 .

[34]  J. Kanicki,et al.  An alternative transparent conducting oxide to ITO for the a-Si:H TFT-LCD applications , 1995, Proceedings of Second International Workshop on Active Matrix Liquid Crystal Displays.

[35]  Hamberg,et al.  Band-gap tailoring of ZnO by means of heavy Al doping. , 1988, Physical review. B, Condensed matter.

[36]  K. Chopra,et al.  Transparent conductors—A status review , 1983 .

[37]  Shinzo Takata,et al.  Highly conductive and transparent zinc oxide films prepared by rf magnetron sputtering under an applied external magnetic field , 1982 .

[38]  John A. Thornton,et al.  Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings , 1974 .

[39]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[40]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .