A Numerical Test of Air Void Spacing Equations
暂无分享,去创建一个
[1] S. Torquato,et al. Porosity for the penetrable-concentric-shell model of two-phase disordered media: Computer simulation results , 1988 .
[2] Michel Pigeon,et al. THE USE OF THE FLOW LENGTH CONCEPT TO ASSESS THE EFFICIENCY OF AIR ENTRAINMENT WITH REGARDS TO FROST DURABILITY: PART II--EXPERIMENTAL RESULTS , 1996 .
[3] W. P. Reid. Distribution of Sizes of Spheres in a Solid from a Study of Slices of the Solid , 1955 .
[4] M. Kerker,et al. Logarithmic Distribution Functions for Colloidal Particles1a , 1964 .
[5] G. Stell,et al. Porosity and specific surface for interpenetrable‐sphere models of two‐phase random media , 1985 .
[6] Emmanuel K. Attiogbe,et al. MEAN SPACING OF AIR VOIDS IN HARDENED CONCRETE , 1993 .
[7] Paul L. Meyer,et al. Introductory Probability and Statistical Applications , 1970 .
[8] Torquato,et al. General formalism to characterize the microstructure of polydispersed random media. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[9] S. Safran,et al. Do interactions raise or lower a percolation threshold? , 1985, Physical review letters.
[10] H. Reiss,et al. Radial distribution function for hard spheres from scaled particle theory, and an improved equation of state , 1974 .
[11] T. Powers,et al. THE AIR REQUIREMENT OF FROST RESISTANT CONCRETE , 1950 .
[12] Edward J. Garboczi,et al. Analytical formulas for interfacial transition zone properties , 1997 .
[13] E. Garboczi,et al. Percolation and pore structure in mortars and concrete , 1994 .
[14] G. Arfken. Mathematical Methods for Physicists , 1967 .
[15] M. Pigeon,et al. The Use of the Flow Length Concept to Assess the Efficiency of Air Entrainment with Regards to Frost Durability: Part I—Description of the Test Method , 1996 .
[16] S. Torquato,et al. Nearest-surface distribution functions for polydispersed particle systems. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[17] K. Snyder,et al. Protected Paste Volume of Air-Entrained Cement Paste. Part II , 1992 .
[18] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[19] E. Garboczi,et al. Effects of Interfacial Zone Percolation on Cement-Based Composite Transport Properties , 1991 .
[20] Torquato,et al. Nearest-neighbor distribution functions in many-body systems. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[21] Arnon Bentur,et al. Materials science of concrete IV: Edited by J. Skalny and S. Mindess, The American Ceramic Society, 1995 , 1995 .
[22] Edward J. Garboczi,et al. Multiscale Analytical/Numerical Theory of the Diffusivity of Concrete , 1998 .
[23] Curtis F. Gerald. Applied numerical analysis , 1970 .
[24] S. Torquato,et al. Computer simulations of nearest-neighbor distribution functions and related quantities for hard-sphere systems , 1990 .
[25] Howard Reiss,et al. Statistical Mechanics of Rigid Spheres , 1959 .
[26] Curtis F. Gerald,et al. APPLIED NUMERICAL ANALYSIS , 1972, The Mathematical Gazette.
[27] P. Hertz,et al. Über den gegenseitigen durchschnittlichen Abstand von Punkten, die mit bekannter mittlerer Dichte im Raume angeordnet sind , 1909 .
[28] J. Macdonald. On the mean separation of particles of finite size in one to three dimensions , 1981 .
[29] E. Attiogbe. VOLUME FRACTION OF PROTECTED PASTE AND MEAN SPACING OF AIR VOIDS , 1997 .
[30] E. Garboczi,et al. Interfacial Zone Percolation in Concrete: Effects of Interfacial Zone Thickness and Aggregate Shape , 1994 .
[31] G. Stell,et al. D-dimensional interpenetrable-sphere models of random two-phase media: Microstructure and an application to chromatography , 1985 .
[32] Jacques Vieillard‐Baron,et al. Phase Transitions of the Classical Hard‐Ellipse System , 1972 .
[33] R. Philleo. A method for analyzing void distribution in air-entrained concrete , 1983 .