A Numerical Test of Air Void Spacing Equations

Abstract Air void spacing equations have been proposed in the literature by a number of authors: Powers; Philleo; Attiogbe; and Pleau and Pigeon. Each proposed spacing equation attempts to characterize the true “spacing” of entrained air voids in concrete. While efforts have been made to correlate these spacing equation calculations to freeze-thaw performance, no test has been performed to assess the geometrical accuracy of these spacing equations. Herein is a computerized accuracy test of these proposed spacing equations. A computer model of air void systems is used, and various “spacings” are measured in the model system. The results of these measurements are then compared to the appropriate spacing equation prediction, along with equations developed by Lu and Torquato.

[1]  S. Torquato,et al.  Porosity for the penetrable-concentric-shell model of two-phase disordered media: Computer simulation results , 1988 .

[2]  Michel Pigeon,et al.  THE USE OF THE FLOW LENGTH CONCEPT TO ASSESS THE EFFICIENCY OF AIR ENTRAINMENT WITH REGARDS TO FROST DURABILITY: PART II--EXPERIMENTAL RESULTS , 1996 .

[3]  W. P. Reid Distribution of Sizes of Spheres in a Solid from a Study of Slices of the Solid , 1955 .

[4]  M. Kerker,et al.  Logarithmic Distribution Functions for Colloidal Particles1a , 1964 .

[5]  G. Stell,et al.  Porosity and specific surface for interpenetrable‐sphere models of two‐phase random media , 1985 .

[6]  Emmanuel K. Attiogbe,et al.  MEAN SPACING OF AIR VOIDS IN HARDENED CONCRETE , 1993 .

[7]  Paul L. Meyer,et al.  Introductory Probability and Statistical Applications , 1970 .

[8]  Torquato,et al.  General formalism to characterize the microstructure of polydispersed random media. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[9]  S. Safran,et al.  Do interactions raise or lower a percolation threshold? , 1985, Physical review letters.

[10]  H. Reiss,et al.  Radial distribution function for hard spheres from scaled particle theory, and an improved equation of state , 1974 .

[11]  T. Powers,et al.  THE AIR REQUIREMENT OF FROST RESISTANT CONCRETE , 1950 .

[12]  Edward J. Garboczi,et al.  Analytical formulas for interfacial transition zone properties , 1997 .

[13]  E. Garboczi,et al.  Percolation and pore structure in mortars and concrete , 1994 .

[14]  G. Arfken Mathematical Methods for Physicists , 1967 .

[15]  M. Pigeon,et al.  The Use of the Flow Length Concept to Assess the Efficiency of Air Entrainment with Regards to Frost Durability: Part I—Description of the Test Method , 1996 .

[16]  S. Torquato,et al.  Nearest-surface distribution functions for polydispersed particle systems. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[17]  K. Snyder,et al.  Protected Paste Volume of Air-Entrained Cement Paste. Part II , 1992 .

[18]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[19]  E. Garboczi,et al.  Effects of Interfacial Zone Percolation on Cement-Based Composite Transport Properties , 1991 .

[20]  Torquato,et al.  Nearest-neighbor distribution functions in many-body systems. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[21]  Arnon Bentur,et al.  Materials science of concrete IV: Edited by J. Skalny and S. Mindess, The American Ceramic Society, 1995 , 1995 .

[22]  Edward J. Garboczi,et al.  Multiscale Analytical/Numerical Theory of the Diffusivity of Concrete , 1998 .

[23]  Curtis F. Gerald Applied numerical analysis , 1970 .

[24]  S. Torquato,et al.  Computer simulations of nearest-neighbor distribution functions and related quantities for hard-sphere systems , 1990 .

[25]  Howard Reiss,et al.  Statistical Mechanics of Rigid Spheres , 1959 .

[26]  Curtis F. Gerald,et al.  APPLIED NUMERICAL ANALYSIS , 1972, The Mathematical Gazette.

[27]  P. Hertz,et al.  Über den gegenseitigen durchschnittlichen Abstand von Punkten, die mit bekannter mittlerer Dichte im Raume angeordnet sind , 1909 .

[28]  J. Macdonald On the mean separation of particles of finite size in one to three dimensions , 1981 .

[29]  E. Attiogbe VOLUME FRACTION OF PROTECTED PASTE AND MEAN SPACING OF AIR VOIDS , 1997 .

[30]  E. Garboczi,et al.  Interfacial Zone Percolation in Concrete: Effects of Interfacial Zone Thickness and Aggregate Shape , 1994 .

[31]  G. Stell,et al.  D-dimensional interpenetrable-sphere models of random two-phase media: Microstructure and an application to chromatography , 1985 .

[32]  Jacques Vieillard‐Baron,et al.  Phase Transitions of the Classical Hard‐Ellipse System , 1972 .

[33]  R. Philleo A method for analyzing void distribution in air-entrained concrete , 1983 .