Grid connected CM noise considerations of a three-phase multi-stage SST

Solid State Transformer (SST) is an alternative to the conventional distribution transformer for smart grid applications. By employing a compact Medium-Frequency (MF) transformer for isolation, the SST has merits on size and weight. It also provides flexible utilization as a FACTS component. The switching converters are a potential source of Common-Mode (CM) and HF EMI noises. These noises are more nuisance in a SiC device based SST which switches at a high dV/dT at the Medium-Voltage (MV) level resulting in high CM voltages. The SST floating metalic surfaces such as heatsink and the output must be grounded for safety and smooth operation. However there are various significant low impedance paths present, including the parasitics of the compact transformer, which may conduct CM noise to the grid. The generated CM noise may affect the controls. This paper presents the CM and grounding challenges in the multistage integration of a three-phase SST system based on 15kV SiC IGBTs termed as Transformerless Intelligent Power Substation (TIPS). The TIPS interfaces MV 13.8kV and LV 480V grids using MV ac-dc, MV to LV dc-dc dual active bridge and LV dc-ac inverter stages. A study on the CM noise in the TIPS and a passive filter solution for its attenuation is presented in this paper. A time domain simulation considering the passive filter specification is also presented. The experimental results for line to line 3.64kV MV grid integration are presented. A LV prototype is used to verify the complete grounding and the CM choke design at a scaled-down condition.

[1]  H. Akagi,et al.  Modeling and damping of high-frequency leakage currents in PWM inverter-fed AC motor drive systems , 1995, IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting.

[2]  Hirofumi Akagi,et al.  An active circuit for cancellation of common-mode voltage generated by a PWM inverter , 1997, PESC97. Record 28th Annual IEEE Power Electronics Specialists Conference. Formerly Power Conditioning Specialists Conference 1970-71. Power Processing and Electronic Specialists Conference 1972.

[3]  A. von Jouanne,et al.  Multilevel inverter modulation schemes to eliminate common-mode voltages , 1998, Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242).

[4]  Dushan Boroyevich,et al.  Passive cancellation of common-mode noise in power electronic circuits , 2001, 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230).

[5]  Hirofumi Akagi,et al.  Design and performance of a passive EMI filter for use with a voltage-source PWM inverter having sinusoidal output voltage and zero common-mode voltage , 2002, 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289).

[6]  H. Akagi,et al.  Design and performance of a passive EMI filter for use with a voltage-source PWM inverter having sinusoidal output voltage and zero common-mode voltage , 2004, IEEE Transactions on Power Electronics.

[7]  Toit Mouton,et al.  Solid-state transformer topology selection , 2009, 2009 IEEE International Conference on Industrial Technology.

[8]  T. Lipo,et al.  A novel topology of solid state transformer , 2010, 2010 1st Power Electronic & Drive Systems & Technologies Conference (PEDSTC).

[9]  Subhashish Bhattacharya,et al.  Transformer less Intelligent Power Substation design with 15kV SiC IGBT for grid interconnection , 2011, 2011 IEEE Energy Conversion Congress and Exposition.

[10]  F. Dawson,et al.  Characterizations of High Frequency Planar Transformer With a Novel Comb-Shaped Shield , 2011, IEEE Transactions on Magnetics.

[11]  Bin Wu,et al.  An Integrated AC Choke Design for Common-Mode Current Suppression in Neutral-Connected Power Converter Systems , 2012, IEEE Transactions on Power Electronics.

[12]  Subhashish Bhattacharya,et al.  Understanding dv/dt of 15 kV SiC N-IGBT and its control using active gate driver , 2014, 2014 IEEE Energy Conversion Congress and Exposition (ECCE).

[13]  S. Ryu,et al.  Experimental switching frequency limits of 15 kV SiC N-IGBT module , 2014, 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA).

[14]  Subhashish Bhattacharya,et al.  Design, measurement and equivalent circuit synthesis of high power HF transformer for three-phase composite dual active bridge topology , 2014, 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014.

[15]  K. Hatua,et al.  Design considerations of a 15kV SiC IGBT enabled high-frequency isolated DC-DC converter , 2014, 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA).

[16]  Subhashish Bhattacharya,et al.  Solid-State Transformer and MV Grid Tie Applications Enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs Based Multilevel Converters , 2015, IEEE Transactions on Industry Applications.

[17]  Subhashish Bhattacharya,et al.  Design Considerations of a 15-kV SiC IGBT-Based Medium-Voltage High-Frequency Isolated DC–DC Converter , 2015, IEEE Transactions on Industry Applications.