Enlarged gold-tipped silicon microprobe arrays and signal compensation for multi-site electroretinogram recordings in the isolated carp retina.
暂无分享,去创建一个
Makoto Ishida | Shiro Usui | Takahiro Kawashima | Hidekazu Kaneko | Takeshi Kawano | Kuniharu Takei | Akito Ishihara | M. Ishida | S. Usui | K. Takei | H. Kaneko | T. Kawashima | T. Kawano | Tetsuhiro Harimoto | T. Harimoto | A. Ishihara
[1] K. E. Jones,et al. A glass/silicon composite intracortical electrode array , 2006, Annals of Biomedical Engineering.
[2] Amir M. Sodagar,et al. A Fully Integrated Mixed-Signal Neural Processor for Implantable Multichannel Cortical Recording , 2007, IEEE Transactions on Biomedical Engineering.
[3] H. Oka,et al. A new planar multielectrode array for extracellular recording: application to hippocampal acute slice , 1999, Journal of Neuroscience Methods.
[4] W. A. Hagins,et al. Signal Transmission along Retinal Rods and the Origin of the Electroretinographic a-Wave , 1969, Nature.
[5] T. Asano. Adaptive properties of the b-wave and the PIII in the perfused isolated carp retina. , 1977, The Japanese journal of physiology.
[6] Michael J. Berry,et al. Role of eye movements in the retinal code for a size discrimination task. , 2007, Journal of neurophysiology.
[7] M. Ishida,et al. Microtube-based electrode arrays for low invasive extracellular recording with a high signal-to-noise ratio , 2010, Biomedical microdevices.
[8] Y. Miyake. Focal macular electroretinography. , 1998, Nagoya journal of medical science.
[9] M. Ishida,et al. Integration of out-of-plane silicon dioxide microtubes, silicon microprobes and on-chip NMOSFETs by selective vapor–liquid–solid growth , 2008 .
[10] Makoto Ishida,et al. Electrical interfacing between neurons and electronics via vertically integrated sub-4 microm-diameter silicon probe arrays fabricated by vapor-liquid-solid growth. , 2010, Biosensors & bioelectronics.
[11] R. W. Rodieck. The vertebrate retina : principles of structure and function , 1973 .
[12] M Hyland,et al. Electrochemical and structural characterizations of electrodeposited iridium oxide thin-film electrodes applied to neurostimulating electrical signal , 2002 .
[13] Makoto Ishida,et al. Multichannel $5 \times 5$-Site 3-Dimensional Si Microprobe Electrode Array for Neural Activity Recording System , 2003 .
[14] M. Tachibana,et al. Synchronized retinal oscillations encode essential information for escape behavior in frogs , 2005, Nature Neuroscience.
[15] K. Sawada,et al. Selective vapor-liquid-solid epitaxial growth of micro-Si probe electrode arrays with on-chip MOSFETs on Si (111) substrates , 2004, IEEE Transactions on Electron Devices.
[16] Erich E. Sutter,et al. The field topography of ERG components in man—I. The photopic luminance response , 1992, Vision Research.
[17] Markus Meister,et al. Multi-neuronal signals from the retina: acquisition and analysis , 1994, Journal of Neuroscience Methods.
[18] M. Ishida,et al. Nanoscale sharpening tips of vapor–liquid–solid grown silicon microwire arrays , 2010, Nanotechnology.
[19] R. Eckhorn,et al. Spatiotemporal receptive field properties of epiretinally recorded spikes and local electroretinograms in cats , 2005, BMC Neuroscience.
[20] Markus Bongard,et al. Retinal ganglion cell synchronization by fixational eye movements improves feature estimation , 2002, Nature Neuroscience.
[21] Stephen A. Baccus,et al. Segregation of object and background motion in the retina , 2003, Nature.