Charge-Transfer-Induced Lattice Collapse in Ni-Rich NCM Cathode Materials during Delithiation

Ni-rich LiNixCoyMnzO2 (NCM) cathode materials have great potential for application in next-generation lithium-ion batteries owing to their high specific capacity. However, they are subjected to severe structural changes upon (de)lithiation, which adversely affects the cycling stability. Herein, we investigate changes in crystal and electronic structure of NCM811 (80% Ni) at high states of charge by a combination of operando X-ray diffraction (XRD), operando hard X-ray absorption spectroscopy (hXAS), ex situ soft X-ray absorption spectroscopy (sXAS), and density functional theory (DFT) calculations and correlate the results with data from galvanostatic cycling in coin cells. XRD reveals a large decrease in unit cell volume from 101.38(1) to 94.26(2) A3 due to collapse of the interlayer spacing when x(Li) < 0.5 (decrease in c-axis from 14.469(1) A at x(Li) = 0.6 to 13.732(2) A at x(Li) = 0.25). hXAS shows that the shrinkage of the transition metal–oxygen layer mainly originates from nickel oxidation. sXAS, ...

[1]  J. Janek,et al.  Anisotropic Lattice Strain and Mechanical Degradation of High- and Low-Nickel NCM Cathode Materials for Li-Ion Batteries , 2017 .

[2]  Marca M. Doeff,et al.  A review of Ni-based layered oxides for rechargeable Li-ion batteries , 2017 .

[3]  Tatsuya Nakamura,et al.  Lattice volume change during charge/discharge reaction and cycle performance of Li[NixCoyMnz]O2 , 2016 .

[4]  D. Aurbach,et al.  Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles. , 2016, Physical chemistry chemical physics : PCCP.

[5]  J. Dahn,et al.  In Situ X-ray Diffraction Study of Layered Li-Ni-Mn-Co Oxides: Effect of Particle Size and Structural Stability of Core-Shell Materials , 2016 .

[6]  J. Dahn,et al.  In-situ Neutron Diffraction Study of a High Voltage Li(Ni0.42Mn0.42Co0.16)O2/Graphite Pouch Cell , 2015 .

[7]  Evan M. Erickson,et al.  Li+‐Ion Extraction/Insertion of Ni‐Rich Li1+x(NiyCozMnz)wO2 (0.005 , 2015 .

[8]  J. Binder,et al.  Unravelling the mechanism of lithium insertion into and extraction from trirutile-type LiNiFeF6 cathode material for Li-ion batteries , 2015 .

[9]  Gerbrand Ceder,et al.  Calibrating transition-metal energy levels and oxygen bands in first-principles calculations: Accurate prediction of redox potentials and charge transfer in lithium transition-metal oxides , 2015, 1507.08768.

[10]  W. Jaegermann,et al.  Electron Spectroscopy Study of Li[Ni,Co,Mn]O2/Electrolyte Interface: Electronic Structure, Interface Composition, and Device Implications , 2015 .

[11]  Kyung Yoon Chung,et al.  Investigation of Changes in the Surface Structure of LixNi0.8Co0.15Al0.05O2 Cathode Materials Induced by the Initial Charge , 2014 .

[12]  Chong Seung Yoon,et al.  Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries , 2013 .

[13]  Y. Orikasa,et al.  Charge compensation mechanisms in Li1.16Ni0.15Co0.19Mn0.50O2 positive electrode material for Li-ion batteries analyzed by a combination of hard and soft X-ray absorption near edge structure , 2013 .

[14]  Bing-Joe Hwang,et al.  Soft X-ray Absorption Spectroscopic and Raman Studies on Li1.2Ni0.2Mn0.6O2 for Lithium-Ion Batteries , 2012 .

[15]  M. Whittingham,et al.  Oxygen and transition metal involvement in the charge compensation mechanism of LiNi1/3Mn1/3Co1/3O2 cathodes , 2012 .

[16]  Hungru Chen,et al.  Charge disproportionation and Jahn-Teller distortion in LiNiO 2 and NaNiO 2 : A density functional theory study , 2011 .

[17]  T. Gustafsson,et al.  Resonant Soft X-Ray Emission Spectroscopy and X-Ray Absorption Spectroscopy on the Cathode Material LiNi0.65Co0.25Mn0.1O2 , 2010 .

[18]  Jyhfu Lee,et al.  Valence change and local structure during cycling of layer-structured cathode materials , 2009 .

[19]  R. Follath,et al.  High-resolution Russian–German beamline at BESSY , 2009 .

[20]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  Jie Xiao,et al.  Layered Mixed Transition Metal Oxide Cathodes with Reduced Cobalt Content for Lithium Ion Batteries , 2008 .

[22]  N. Kosova,et al.  Effect of electronic state of ions on the electrochemical properties of layered cathode materials LiNi1−2xCoxMnxO2 , 2008 .

[23]  Xiao‐Qing Yang,et al.  Electronic structural changes of the electrochemically Li-ion deintercalated LiNi0.8Co0.15Al0.05O2 cathode material investigated by X-ray absorption spectroscopy , 2007 .

[24]  B. Hwang,et al.  Soft X-ray absorption spectroscopy studies on the chemically delithiated commercial LiCoO2 cathode material , 2007 .

[25]  Y. Shao-horn,et al.  Changes in the Crystal Structure and Electrochemical Properties of Li x Ni0.5Mn0.5O2 during Electrochemical Cycling to High Voltages , 2007 .

[26]  H. Sheu,et al.  In Situ Synchrotron X-Ray Studies of LiNi1 − x − y Co y Mn x O2 Cathode Materials , 2007 .

[27]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[28]  G. M. Stocks,et al.  Ground state valency and spin configuration of the Ni ions in nickelates. , 2006, Physical Review Letters.

[29]  L. Nazar,et al.  X-ray/Neutron Diffraction and Electrochemical Studies of Lithium De/Re-Intercalation in Li1-xCo1/3Ni1/3Mn1/3O2 (x = 0 → 1) , 2006 .

[30]  Xiao‐Qing Yang,et al.  Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. , 2005, Journal of the American Chemical Society.

[31]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[32]  E. Cairns,et al.  In situ x-ray absorption spectroscopic study of the Li[Ni1∕3Co1∕3Mn1∕3]O2 cathode material , 2005 .

[33]  G. Ceder,et al.  In-Situ X-ray Absorption Spectroscopic Study on Variation of Electronic Transitions and Local Structure of LiNi1/3Co1/3Mn1/3O2 Cathode Material during Electrochemical Cycling , 2005 .

[34]  Ermete Antolini,et al.  LixNi1−xO (0, 2003 .

[35]  Gerbrand Ceder,et al.  A Combined Computational/Experimental Study on LiNi1/3Co1/3Mn1/3O2 , 2003 .

[36]  Min Gyu Kim,et al.  Oxygen contribution on Li-ion intercalation-deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy , 2002 .

[37]  Jingguang G. Chen NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds , 1998 .

[38]  Alan V. Chadwick,et al.  On the behavior of the LixNiO2 system: an electrochemical and structural overview , 1997 .

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[41]  C. Delmas,et al.  XAS study of lithium nickel oxide , 1995 .

[42]  C. Delmas,et al.  Non-cooperative Jahn-Teller effect in LiNiO2: An EXAFS study , 1995 .

[43]  R. Messina,et al.  Behavior of lithium-electrolyte interface during cycling in some ether-carbonate and carbonate mixtures , 1995 .

[44]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[45]  Y. Takeda,et al.  Phase Relationship and Lithium Deintercalation in Lithium Nickel Oxides , 1994 .

[46]  J. Dahn,et al.  In situ x-ray diffraction and electrochemical studies of Li1−xNiO2 , 1993 .

[47]  G. Sawatzky,et al.  Oxygen 1s x-ray-absorption edges of transition-metal oxides. , 1989, Physical review. B, Condensed matter.

[48]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[49]  Jonathan A. Cooper,et al.  Spectral Distribution of Atomic Oscillator Strengths , 1968 .

[50]  Arumugam Manthiram,et al.  A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries , 2017 .

[51]  Doron Aurbach,et al.  Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes I. Nickel-Rich, LiNixCoyMnzO2 , 2017 .

[52]  C. Delmas,et al.  Structural characterisation of the highly deintercalatedLixNi1.02O2 phases (with x ≤ 0.30) , 2001 .