From bidirectional rectifier to polarity-controllable transistor in black phosphorus by dual gate modulation

In complementary metal oxide semiconductor (CMOS) technology, well-defined unipolar transport in field-effect transistors (FETs) is a basic requirement for logic operations, which can be realized by controllable doping of the semiconductor with electrons (n-type) or holes (p-type). However, recent demonstration of polarity controllable transistors in 2D semiconductors provides a flexible way in circuit design with increased circuit integration density. Here we demonstrate the conversion of a bidirectional rectifier to a polarity-controllable transistor in black phosphorus (BP) by dual gate modulation. Electrical characterization of the BP bidirectional rectifier reveals a current rectification of ~35 at room temperature that increases to ~350 upon lowering the temperature to 110 K. Employing cross-linked PMMA as a top gate and combining it together with the global back gate of the SiO2 substrate, well-defined unipolar transport (n- or p-type) in BP could get accessed. This successful realization of polarity-controllable transistor in BP provides an alternative design for development of BP logic electronics.

[1]  F. Xia,et al.  Tunable optical properties of multilayer black phosphorus thin films , 2014, 1404.4030.

[2]  Unipolar transport in bilayer graphene controlled by multiple p-n interfaces , 2012, 1203.6591.

[3]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[4]  Rostislav A. Doganov,et al.  Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms. , 2016, Nano letters.

[5]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[6]  D. Akinwande,et al.  Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. , 2015, Nano letters.

[7]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  O. Yazyev,et al.  Polycrystalline graphene and other two-dimensional materials. , 2014, Nature nanotechnology.

[9]  Jeong-O Lee,et al.  Complete gate control of supercurrent in graphene p–n junctions , 2013, Nature Communications.

[10]  Yoshihiro Iwasa,et al.  Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. , 2013, Nano letters.

[11]  Du Xiang,et al.  Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus , 2015, Nature Communications.

[12]  Takhee Lee,et al.  Graphene/Pentacene Barristor with Ion-Gel Gate Dielectric: Flexible Ambipolar Transistor with High Mobility and On/Off Ratio. , 2015, ACS nano.

[13]  Klaus von Klitzing,et al.  Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping. , 2009, Nano letters.

[14]  P. Ye,et al.  Semiconducting black phosphorus: synthesis, transport properties and electronic applications. , 2014, Chemical Society Reviews.

[15]  peixiong zhao,et al.  Introduction of Interfacial Charges to Black Phosphorus for a Family of Planar Devices. , 2016, Nano letters.

[16]  Xianfan Xu,et al.  Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. , 2014, ACS nano.

[17]  M. Caironi,et al.  Control of Ambipolar and Unipolar Transport in Organic Transistors by Selective Inkjet‐Printed Chemical Doping for High Performance Complementary Circuits , 2014 .

[18]  J. Knoch,et al.  High-performance carbon nanotube field-effect transistor with tunable polarities , 2005, IEEE Transactions on Nanotechnology.

[19]  Andres Castellanos-Gomez,et al.  Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. , 2014, Nature communications.

[20]  P. Ye,et al.  Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. , 2014, ACS Nano.

[21]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[22]  P. Jeon,et al.  Dual Gate Black Phosphorus Field Effect Transistors on Glass for NOR Logic and Organic Light Emitting Diode Switching. , 2015, Nano letters.

[23]  Lian Ji,et al.  Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping , 2013 .

[24]  T. Palacios,et al.  High-Performance WSe2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits. , 2015, Nano letters.

[25]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[26]  A. Castellanos-Gómez,et al.  Black Phosphorus: Narrow Gap, Wide Applications. , 2015, The journal of physical chemistry letters.

[27]  Kazuhito Tsukagoshi,et al.  Electrostatically Reversible Polarity of Dual-Gated Graphene Transistors , 2014, IEEE Transactions on Nanotechnology.

[28]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[29]  Gyu-Tae Kim,et al.  Few-layer black phosphorus field-effect transistors with reduced current fluctuation. , 2014, ACS nano.

[30]  C. N. Lau,et al.  Ionic Liquid Gating of Suspended MoS2 Field Effect Transistor Devices. , 2015, Nano letters.

[31]  Andres Castellanos-Gomez,et al.  Photocurrent generation with two-dimensional van der Waals semiconductors. , 2015, Chemical Society reviews.

[32]  Hua Yu,et al.  Gate tunable MoS2–black phosphorus heterojunction devices , 2015 .

[33]  Kinam Kim,et al.  Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier , 2012, Science.

[34]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[35]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[36]  H. Zhang,et al.  Chemical sensing by band modulation of a black phosphorus/molybdenum diselenide van der Waals hetero-structure , 2016 .

[37]  Min Sup Choi,et al.  Metal-Semiconductor Barrier Modulation for High Photoresponse in Transition Metal Dichalcogenide Field Effect Transistors , 2014, Scientific Reports.

[38]  Kazuhito Tsukagoshi,et al.  Electrostatically Reversible Polarity of Ambipolar α-MoTe2 Transistors. , 2015, ACS nano.

[39]  Tobin J. Marks,et al.  Gate-tunable carbon nanotube–MoS2 heterojunction p-n diode , 2013, Proceedings of the National Academy of Sciences.

[40]  Yusuf Leblebici,et al.  Configurable Logic Gates Using Polarity-Controlled Silicon Nanowire Gate-All-Around FETs , 2014, IEEE Electron Device Letters.

[41]  A. H. Castro Neto,et al.  Electric field effect in ultrathin black phosphorus , 2014 .

[42]  A. Morita,et al.  Band structure and optical properties of black phosphorus , 1984 .

[43]  Hao Jiang,et al.  Black phosphorus radio-frequency transistors. , 2014, Nano letters.

[44]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[45]  S. Chae,et al.  High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering , 2015, Nature Communications.