Multi-objective evolutionary algorithm for optimizing the partial area under the ROC curve

[1]  Ye Tian,et al.  An Indicator-Based Multiobjective Evolutionary Algorithm With Reference Point Adaptation for Better Versatility , 2018, IEEE Transactions on Evolutionary Computation.

[2]  Fang Liu,et al.  3D fast convex-hull-based evolutionary multiobjective optimization algorithm , 2018, Appl. Soft Comput..

[3]  Leonidas E Bantis,et al.  Combining multiple biomarkers linearly to maximize the partial area under the ROC curve , 2018, Statistics in medicine.

[4]  Ye Tian,et al.  A Decision Variable Clustering-Based Evolutionary Algorithm for Large-Scale Many-Objective Optimization , 2018, IEEE Transactions on Evolutionary Computation.

[5]  Ye Tian,et al.  Effectiveness and efficiency of non-dominated sorting for evolutionary multi- and many-objective optimization , 2017, Complex & Intelligent Systems.

[6]  Markus Olhofer,et al.  A mini-review on preference modeling and articulation in multi-objective optimization: current status and challenges , 2017, Complex & Intelligent Systems.

[7]  Yaochu Jin,et al.  Pattern Recommendation in Task-oriented Applications: A Multi-Objective Perspective [Application Notes] , 2017, IEEE Computational Intelligence Magazine.

[8]  Zhi-Hua Zhou,et al.  Online game props recommendation with real assessments , 2016, Complex & Intelligent Systems.

[9]  Shan Suthaharan,et al.  Support Vector Machine , 2016 .

[10]  Harikrishna Narasimhan,et al.  Support Vector Algorithms for Optimizing the Partial Area under the ROC Curve , 2016, Neural Computation.

[11]  A. Janssens,et al.  Constructing Hypothetical Risk Data from the Area under the ROC Curve: Modelling Distributions of Polygenic Risk , 2016, PloS one.

[12]  Ke Tang,et al.  Convex hull-based multi-objective evolutionary computation for maximizing receiver operating characteristics performance , 2015, Memetic Computing.

[13]  Ye Tian,et al.  A Knee Point-Driven Evolutionary Algorithm for Many-Objective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[14]  Taesung Park,et al.  Two simple algorithms on linear combination of multiple biomarkers to maximize partial area under the ROC curve , 2015, Comput. Stat. Data Anal..

[15]  Xin Yao,et al.  Convex Hull-Based Multiobjective Genetic Programming for Maximizing Receiver Operating Characteristic Performance , 2015, IEEE Transactions on Evolutionary Computation.

[16]  Vítor Basto Fernandes,et al.  Multiobjective optimization of classifiers by means of 3D convex-hull-based evolutionary algorithms , 2014, Inf. Sci..

[17]  Xiaoling Wang,et al.  Optimizing top-k retrieval: submodularity analysis and search strategies , 2014, Frontiers of Computer Science.

[18]  Oliver Kuss,et al.  A modified Wald interval for the area under the ROC curve (AUC) in diagnostic case-control studies , 2014, BMC Medical Research Methodology.

[19]  Xin Yao,et al.  Multiobjective genetic programming for maximizing ROC performance , 2014, Neurocomputing.

[20]  Huey-Miin Hsueh,et al.  Biomarker selection for medical diagnosis using the partial area under the ROC curve , 2014, BMC Research Notes.

[21]  Anton van den Hengel,et al.  Efficient Pedestrian Detection by Directly Optimizing the Partial Area under the ROC Curve , 2013, 2013 IEEE International Conference on Computer Vision.

[22]  Harikrishna Narasimhan,et al.  SVMpAUCtight: a new support vector method for optimizing partial AUC based on a tight convex upper bound , 2013, KDD.

[23]  Harikrishna Narasimhan,et al.  A Structural SVM Based Approach for Optimizing Partial AUC , 2013, ICML.

[24]  Dazhe Zhao,et al.  An Optimized Cost-Sensitive SVM for Imbalanced Data Learning , 2013, PAKDD.

[25]  Huey-Miin Hsueh,et al.  The linear combinations of biomarkers which maximize the partial area under the ROC curves , 2013, Comput. Stat..

[26]  Sangsoo Kim,et al.  Partial AUC maximization for essential gene prediction using genetic algorithms , 2013, BMB reports.

[27]  Shinto Eguchi,et al.  An Extension of the Receiver Operating Characteristic Curve and AUC-Optimal Classification , 2012, Neural Computation.

[28]  Pietro Perona,et al.  Pedestrian Detection: An Evaluation of the State of the Art , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Francesco Tortorella,et al.  Partial AUC maximization in a linear combination of dichotomizers , 2011, Pattern Recognit..

[30]  Christian S. Jensen,et al.  Efficient Retrieval of the Top-k Most Relevant Spatial Web Objects , 2009, Proc. VLDB Endow..

[31]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[32]  Charles X. Ling,et al.  Using AUC and accuracy in evaluating learning algorithms , 2005, IEEE Transactions on Knowledge and Data Engineering.

[33]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[34]  Guy W. Mineau,et al.  A simple KNN algorithm for text categorization , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[35]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[36]  Ying Wang,et al.  Direct Optimization of Partial AUC with Tighter Non-Convex Loss , 2016 .

[37]  Vladimir Vapnik,et al.  Support-vector networks , 2004, Machine Learning.

[38]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[39]  David B. Fogel,et al.  Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .