Hierarchical formal verification using a hybrid tool

Abstract.We describe a hybrid formal hardware verification tool that links the HOL interactive proof system and the MDG automated hardware verification tool. It supports a hierarchical verification approach that mirrors the hierarchical structure of designs. We obtain the advantages of both verification paradigms. We illustrate its use by considering a component of a communications chip. Verification with the hybrid tool is significantly faster and more tractable than using either tool alone.

[1]  Derek McAuley,et al.  Fairisle: an ATM network for the local area , 1991, SIGCOMM 1991.

[2]  Carl-Johan H. Seger,et al.  Lifted-FL: A Pragmatic Implementation of Combined Model Checking and Theorem Proving , 1999, TPHOLs.

[3]  Eduard Cerny,et al.  On the non-termination of MDGs-based abstract state enumeration , 1997 .

[4]  Sofiène Tahar,et al.  Importing MDG Verification Results into HOL , 1999, TPHOLs.

[5]  Sofiène Tahar,et al.  Practical approaches to the automatic verification of an ATM switch fabric using VIS , 1998, Proceedings of the 8th Great Lakes Symposium on VLSI (Cat. No.98TB100222).

[6]  Sofiène Tahar,et al.  Automating the verification of parameterized hardware using a hybrid tool , 2001, ICM 2001 Proceedings. The 13th International Conference on Microelectronics..

[7]  Paul Curzon,et al.  The Formal Veri cation of the Fairisle ATM Switching Element , 1994 .

[8]  Thomas Kropf,et al.  Structuring and automating hardware proofs in a higher-order theorem-proving environment , 1993, Formal Methods Syst. Des..

[9]  Klaus Schneider,et al.  A HOL Conversion for Translating Linear Time Temporal Logic to omega-Automata , 1999, TPHOLs.

[10]  Lawrence Charles Paulson,et al.  ML for the working programmer , 1991 .

[11]  Sofiène Tahar,et al.  A hierarchical approach to the formal verification of embedded systems using MDGs [microcontrollers] , 1999, Proceedings Ninth Great Lakes Symposium on VLSI.

[12]  K. Schneider,et al.  A HOL Conversion for Translating Linear Time Temporal Logic to ω-Automata ? , 1999 .

[13]  Thomas Kropf,et al.  Verifying Hardware Correctness by Combining Theorem Proving and Model Checking , 1995 .

[14]  Gilles Dowek,et al.  Proceedings of the 12th International Conference on Theorem Proving in Higher Order Logics , 1999 .

[15]  Richard J. Boulton,et al.  The PROSPER Toolkit , 2000, TACAS.

[16]  Natarajan Shankar,et al.  An Integration of Model Checking with Automated Proof Checking , 1995, CAV.

[17]  Sofiène Tahar,et al.  Verification of the MDG Components Library in HOL , 1998 .

[18]  Sofiène Tahar,et al.  Modeling and Automatic Formal Verification of the Fairisle ATM Switch Fabric using MDGs , 1997 .

[19]  Miriam Leeser,et al.  Toward a Super Duper Hardware Tactic , 1993, HUG.

[20]  Xiaoyu Song,et al.  Multiway Decision Graphs for Automated Hardware Verification , 1997, Formal Methods Syst. Des..

[21]  Joe Hurd Integrating Gandalf and HOL , 1999, TPHOLs.

[22]  Hasan Zobair,et al.  Modeling and Formal Verification of a Telecom System Block Using MDGs , 2001 .

[23]  Xiaoyu Song,et al.  On the non-termination of M-based abstract state enumeration , 1997, Theor. Comput. Sci..

[24]  M. Gordon,et al.  Introduction to HOL: a theorem proving environment for higher order logic , 1993 .

[25]  Jeffrey J. Joyce,et al.  Linking BDD-Based Symbolic Evaluation to Interactive Theorem-Proving , 1993, 30th ACM/IEEE Design Automation Conference.