Computation with competing patterns in Life-like automaton

We study a Life-like cellular automaton rule B2/S2345 where a cell in state ‘0’ takes state ‘1’ if it has exactly two neighbors in state ‘1’ and the cell remains in the state ‘1’ if it has between two and five neighbors in state ‘1.’ This automaton is a discrete analog spatially extended chemical media, combining both properties of sub-excitable and precipitating chemical media. When started from random initial configuration B2/S2345 automaton exhibits chaotic behavior. Configurations with low density of state ‘1’ show emergence of localized propagating patterns and stationary localizations. We construct basic logical gates and elementary arithmetical circuits by simulating logical signals with mobile localizations reaction propagating geometrically restricted by stationary non-destructible localizations. Values of Boolean variables are encoded into two types of patterns — symmetric False and asymmetric True patterns -- which compete for the ‘empty’ space when propagate in the channels. Implementations of logical gates and binary adders are illustrated explicitly.

[1]  H. McIntosh Wolfram's class IV automata and good life , 1990 .

[2]  Genaro Juárez Martínez,et al.  Localization Dynamics in a Binary Two-dimensional Cellular Automaton: the Diffusion Rule , 2009, J. Cell. Autom..

[3]  Kenichi Yoshikawa,et al.  On Chemical Reactors That Can Count , 2003 .

[4]  Quan Shi,et al.  Network Structure Cascade for Reversible Logic , 2007, Third International Conference on Natural Computation (ICNC 2007).

[5]  Wendy Goucher Weaving in the yellow , 2009 .

[6]  Claude Lattaud,et al.  Complexity Classes in the Two-dimensional Life Cellular Automata Subspace , 1997, Complex Syst..

[7]  Katsunobu Imai,et al.  A computation-universal two-dimensional 8-state triangular reversible cellular automaton , 2000, Theor. Comput. Sci..

[8]  S. Wolfram,et al.  Two-dimensional cellular automata , 1985 .

[9]  Paul W. Rendell,et al.  Turing Universality of the Game of Life , 2002, Collision-Based Computing.

[10]  M Mitchell,et al.  Life and evolution in computers. , 2001, History and philosophy of the life sciences.

[11]  Janko Gravner,et al.  Growth Phenomena in Cellular Automata , 2009, Encyclopedia of Complexity and Systems Science.

[12]  Genaro Juárez Martínez,et al.  Majority Adder Implementation by Competing Patterns in Life-Like Rule B2/S2345 , 2010, UC.

[13]  J Gorecki,et al.  T-shaped coincidence detector as a band filter of chemical signal frequency. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Cristopher Moore,et al.  New constructions in cellular automata , 2003 .

[15]  L. Kuhnert,et al.  Analysis of the modified complete Oregonator accounting for oxygen sensitivity and photosensitivity of Belousov-Zhabotinskii systems , 1990 .

[16]  Valentina Beato,et al.  Pulse propagation in a model for the photosensitive Belousov-Zhabotinsky reaction with external noise , 2003, SPIE International Symposium on Fluctuations and Noise.

[17]  T. Toffoli Non-Conventional Computers , 1998 .

[18]  Jean-Philippe Rennard,et al.  Implementation of Logical Functions in the Game of Life , 2004, Collision-Based Computing.

[19]  Andrew Adamatzky,et al.  Collision-Based Computing , 2002, Springer London.

[20]  A. Blokhuis Winning ways for your mathematical plays , 1984 .

[21]  Andrew Adamatzky,et al.  Implementation of glider guns in the light-sensitive Belousov-Zhabotinsky medium. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Tomohiko Yamaguchi,et al.  Numerical study on time delay for chemical wave transmission via an inactive gap , 1997 .

[23]  Jerzy Gorecki,et al.  Logical Functions of a Cross Junction of Excitable Chemical Media , 2001 .

[24]  Cristopher Moore,et al.  Life Without Death is P-complete , 1997, Complex Syst..

[25]  Jonathan D. Victor,et al.  Local Structure Theory in More Than One Dimension , 1987, Complex Syst..

[26]  Harold V. McIntosh Life's Still Lifes , 2010, Game of Life Cellular Automata.

[27]  Andrew Adamatzky,et al.  Hot ice computer , 2009, 0908.4426.

[28]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[29]  Tetsuya Asai,et al.  Reaction-diffusion computers , 2005 .

[30]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[31]  Paul Manneville,et al.  Evidence of Collective Behaviour in Cellular Automata , 1991 .

[32]  Master Gardener,et al.  Mathematical games: the fantastic combinations of john conway's new solitaire game "life , 1970 .

[33]  Juan Carlos Seck Tuoh Mora,et al.  Phenomenology of Reaction-diffusion Binary-State Cellular Automata , 2006, Int. J. Bifurc. Chaos.

[34]  K. Yoshikawa,et al.  Real-time memory on an excitable field. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Wolfgang Porod,et al.  Quantum-dot cellular automata : computing with coupled quantum dots , 1999 .

[36]  Andrew Adamatzky,et al.  On logical gates in precipitating medium: Cellular automaton model , 2008 .

[37]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .

[38]  V. Krinsky,et al.  Excitable medium with left–right symmetry breaking , 1998 .

[39]  Maurice Margenstern,et al.  Universality of Reversible Hexagonal Cellular Automata , 1999, RAIRO Theor. Informatics Appl..

[40]  Kenneth Showalter,et al.  Logic gates in excitable media , 1995 .

[41]  Andrew Adamatzky,et al.  Physarum machines: encapsulating reaction–diffusion to compute spanning tree , 2007, Naturwissenschaften.

[42]  Andrew Adamatzky,et al.  Computing in nonlinear media and automata collectives , 2001 .