Bayesian Network Classifiers for Gene Expression Analysis

[1]  Simon Lin,et al.  Methods of microarray data analysis III , 2002 .

[2]  P. Spirtes,et al.  Causation, Prediction, and Search, 2nd Edition , 2001 .

[3]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[4]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[5]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Erik Østergaard,et al.  A neutrophil‐derived proteolytic inactive elastase homologue (hHBP) mediates reversible contraction of fibroblasts and endothelial cell monolayers and stimulates monocyte survival and thrombospondin secretion , 1992, Journal of leukocyte biology.

[7]  Tommi S. Jaakkola,et al.  Combining Location and Expression Data for Principled Discovery of Genetic Regulatory Network Models , 2001, Pacific Symposium on Biocomputing.

[8]  Werner Dubitzky,et al.  Comparing Symbolic and Subsymbolic Machine Learning Approaches to Classification of Cancer and Gene Identification , 2002 .

[9]  T. Darden,et al.  Computational Analysis of Leukemia Microarray Expression Data Using the GA/KNN Method , 2002 .

[10]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[11]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[12]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[13]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[14]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[15]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[16]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[17]  T. Hoang,et al.  Gradient of E2A Activity in B-Cell Development , 2002, Molecular and Cellular Biology.

[18]  M. Ringnér,et al.  Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks , 2001, Nature Medicine.

[19]  Byoung-Tak Zhang,et al.  Applying Machine Learning Techniques to Analysis of Gene Expression Data: Cancer Diagnosis , 2002 .

[20]  V. Linde,et al.  Heparin-binding protein targeted to mitochondrial compartments protects endothelial cells from apoptosis. , 1999, The Journal of clinical investigation.

[21]  Doug Fisher,et al.  Learning from Data: Artificial Intelligence and Statistics V , 1996 .

[22]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[23]  M. Slovak,et al.  Adult precursor-B acute lymphoblastic leukemia with translocations involving chromosome band 19p13 is associated with poor prognosis. , 1999, Cancer genetics and cytogenetics.

[24]  David Maxwell Chickering,et al.  Learning Bayesian Networks is , 1994 .

[25]  Nir Friedman,et al.  Tissue classification with gene expression profiles. , 2000 .

[26]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[27]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[28]  Ron Kohavi,et al.  Supervised and Unsupervised Discretization of Continuous Features , 1995, ICML.

[29]  Jill P. Mesirov,et al.  Class prediction and discovery using gene expression data , 2000, RECOMB '00.

[30]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[31]  Nir Friedman,et al.  Learning Bayesian Networks with Local Structure , 1996, UAI.