From metal-organic framework to intrinsically fluorescent carbon nanodots.

Highly photoluminescent carbon nanodots (CNDs) were synthesized for the first time from metal-organic framework (MOF, ZIF-8) nanoparticles. Coupled with fluorescence and non-toxic characteristics, these carbon nanodots could potentially be used in biosafe color patterning.

[1]  Qiang Xu,et al.  From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. , 2014, Chemical communications.

[2]  Qiang Xu,et al.  Metal–organic frameworks as platforms for clean energy , 2013 .

[3]  Jing Wang,et al.  Nano-bio effects: interaction of nanomaterials with cells. , 2013, Nanoscale.

[4]  Yuichiro Kamachi,et al.  Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. , 2013, Chemical communications.

[5]  Xingyu Jiang,et al.  Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions , 2013 .

[6]  Allen K. Bourdon,et al.  Hidden Properties of Carbon Dots Revealed After HPLC Fractionation. , 2013, The journal of physical chemistry letters.

[7]  Xingyuan Liu,et al.  A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. , 2012, Angewandte Chemie.

[8]  Zhenhui Kang,et al.  Carbon nanodots: synthesis, properties and applications , 2012 .

[9]  R. Banerjee,et al.  Control of porosity by using isoreticular zeolitic imidazolate frameworks (IRZIFs) as a template for porous carbon synthesis. , 2012, Chemistry.

[10]  Chengzhou Zhu,et al.  Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. , 2012, Chemical Communications.

[11]  Seung Jae Yang,et al.  Preparation of Highly Moisture‐Resistant Black‐Colored Metal Organic Frameworks , 2012, Advanced materials.

[12]  L. Dai,et al.  Highly luminescent carbon nanodots by microwave-assisted pyrolysis. , 2012, Chemical communications.

[13]  Kimoon Kim,et al.  Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks. , 2012, Chemical communications.

[14]  Guonan Chen,et al.  Polyamine-functionalized carbon quantum dots for chemical sensing , 2012 .

[15]  K. Ariga,et al.  Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. , 2012, Chemical communications.

[16]  Cheng Wang,et al.  A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols. , 2012, Journal of the American Chemical Society.

[17]  Bai Yang,et al.  Control the size and surface chemistry of graphene for the rising fluorescent materials. , 2012, Chemical communications.

[18]  P. Feng,et al.  Development of composite inorganic building blocks for MOFs. , 2012, Journal of the American Chemical Society.

[19]  Katsuhiko Ariga,et al.  Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. , 2012, Journal of the American Chemical Society.

[20]  Yern Seung Kim,et al.  MOF-Derived Hierarchically Porous Carbon with Exceptional Porosity and Hydrogen Storage Capacity , 2012 .

[21]  E. Giannelis,et al.  Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. , 2012, Journal of the American Chemical Society.

[22]  Amit Jaiswal,et al.  One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). , 2012, Chemical communications.

[23]  Mingtao Zheng,et al.  One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. , 2012, Chemical communications.

[24]  B. K. Gupta,et al.  Graphene quantum dots derived from carbon fibers. , 2012, Nano letters.

[25]  R. Mokaya,et al.  Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework , 2012 .

[26]  H. Martínez,et al.  Intercalation and grafting of benzene derivatives into zinc-aluminum and copper-chromium layered double hydroxide hosts: an XPS monitoring study. , 2011, Physical chemistry chemical physics : PCCP.

[27]  Tomoki Akita,et al.  From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. , 2011, Journal of the American Chemical Society.

[28]  Lei Wang,et al.  Self-assembled graphene platelet-glucose oxidase nanostructures for glucose biosensing. , 2011, Biosensors & bioelectronics.

[29]  Yuanjian Zhang,et al.  Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs). , 2011, Chemical communications.

[30]  Osami Sakata,et al.  Highly crystalline nanofilm by layering of porphyrin metal-organic framework sheets. , 2011, Journal of the American Chemical Society.

[31]  Qiang Xu,et al.  Porous metal-organic frameworks as platforms for functional applications. , 2011, Chemical communications.

[32]  Ann V. Call,et al.  Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. , 2011, Chemistry.

[33]  Y. Yamauchi,et al.  Preparation of Microporous Carbon Fibers through Carbonization of Al-Based Porous Coordination Polymer (Al-PCP) with Furfuryl Alcohol , 2011 .

[34]  Huanlei Wang,et al.  Porous carbons prepared by using metal–organic framework as the precursor for supercapacitors , 2010 .

[35]  Sheila N. Baker,et al.  Lumineszierende Kohlenstoff‐Nanopunkte: Nanolichtquellen mit Zukunft , 2010 .

[36]  Sheila N. Baker,et al.  Luminescent carbon nanodots: emergent nanolights. , 2010, Angewandte Chemie.

[37]  Dan Zhao,et al.  An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. , 2010, Angewandte Chemie.

[38]  Minghong Wu,et al.  Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. , 2010, Chemical communications.

[39]  Guodong Qian,et al.  Metal-organic frameworks with functional pores for recognition of small molecules. , 2010, Accounts of chemical research.

[40]  P. Prasad,et al.  Two- and Three-Photon Absorption Induced Emission, Optical Limiting and Stabilization of CdTe/CdS/ZnS Quantum Tripods System , 2010, IEEE Journal of Quantum Electronics.

[41]  Minghong Wu,et al.  Hydrothermal Route for Cutting Graphene Sheets into Blue‐Luminescent Graphene Quantum Dots , 2010, Advanced materials.

[42]  Xin-bo Zhang,et al.  Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor , 2010 .

[43]  Zhigang Xie,et al.  Freeze drying significantly increases permanent porosity and hydrogen uptake in 4,4-connected metal-organic frameworks. , 2009, Angewandte Chemie.

[44]  Fan Yang,et al.  Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. , 2009, Chemical communications.

[45]  Xiao-Ming Chen,et al.  Supramolecular isomerism in coordination polymers. , 2009, Chemical Society reviews.

[46]  Dongqing Wu,et al.  An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. , 2009, Angewandte Chemie.

[47]  N. Xia,et al.  Worm-like mesoporous carbon synthesized from metal―organic coordination polymers for supercapacitors , 2009 .

[48]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[49]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[50]  A. B. Fuertes,et al.  Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. , 2009, Chemistry.

[51]  Y. Chi,et al.  Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. , 2009, Journal of the American Chemical Society.

[52]  Jing Yang,et al.  One-step synthesis of fluorescent carbon nanoparticles by laser irradiation , 2009 .

[53]  P. Prasad,et al.  Synthesis, Characterization, Two‐Photon Absorption, and Optical Limiting Properties of Ladder‐Type Oligo‐p‐phenylene‐Cored Chromophores , 2008 .

[54]  S. Kitagawa,et al.  A dynamic, isocyanurate-functionalized porous coordination polymer. , 2008, Angewandte Chemie.

[55]  T. Akita,et al.  Metal-organic framework as a template for porous carbon synthesis. , 2008, Journal of the American Chemical Society.

[56]  C. Mao,et al.  Fluorescent carbon nanoparticles derived from candle soot. , 2007, Angewandte Chemie.

[57]  Yoshihiro Nakajima,et al.  Luciferase-YFP fusion tag with enhanced emission for single-cell luminescence imaging , 2007, Nature Methods.

[58]  R. Li,et al.  An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). , 2007, Journal of the American Chemical Society.

[59]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[60]  Ya‐Ping Sun,et al.  Quantum-sized carbon dots for bright and colorful photoluminescence. , 2006, Journal of the American Chemical Society.

[61]  Xiao-Ming Chen,et al.  Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. , 2006, Angewandte Chemie.

[62]  Huan-Cheng Chang,et al.  Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. , 2005, Journal of the American Chemical Society.

[63]  P. Prasad,et al.  Two- and three-photon absorption based optical limiting and stabilization using a liquid dye , 2005, IEEE Journal of Quantum Electronics.

[64]  Latha A. Gearheart,et al.  Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. , 2004, Journal of the American Chemical Society.

[65]  S. Kitagawa,et al.  Funktionale poröse Koordinationspolymere , 2004 .

[66]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[67]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[68]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[69]  P. Prasad,et al.  Two-Photon Excitation and Optical Spatial-Profile Reshaping via a Nonlinear Absorbing Medium† , 2000 .

[70]  J. Bhawalkar,et al.  Optical limiting, pulse reshaping, and stabilization with a nonlinear absorptive fiber system. , 1997, Applied optics.