Polynomially scaling spin dynamics II: further state-space compression using Krylov subspace techniques and zero track elimination.

We extend the recently proposed state-space restriction (SSR) technique for quantum spin dynamics simulations [Kuprov et al., J. Magn. Reson. 189 (2007) 241-250] to include on-the-fly detection and elimination of unpopulated dimensions from the system density matrix. Further improvements in spin dynamics simulation speed, frequently by several orders of magnitude, are demonstrated. The proposed zero track elimination (ZTE) procedure is computationally inexpensive, reversible, numerically stable and easy to add to any existing simulation code. We demonstrate that it belongs to the same family of Krylov subspace techniques as the well-known Lanczos basis pruning procedure. The combined SSR+ZTE algorithm is recommended for simulations of NMR, EPR and Spin Chemistry experiments on systems containing between 10 and 10(4) coupled spins.

[1]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[2]  B. Meier,et al.  Computer Simulations in Magnetic Resonance. An Object-Oriented Programming Approach , 1994 .

[3]  Jack H. Freed,et al.  Calculation of ESR spectra and related Fokker–Planck forms by the use of the Lanczos algorithm. II. Criteria for truncation of basis sets and recursive steps utilizing conjugate gradients , 1987 .

[4]  M. Levitt,et al.  Spherical tensor analysis of nuclear magnetic resonance signals. , 2005, The Journal of chemical physics.

[5]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[6]  Thomas Vosegaard,et al.  Numerical Simulations in Biological Solid-State NMR Spectroscopy , 2004 .

[7]  Z. Bai Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[8]  A. Ramamoorthy NMR Spectroscopy of Biological Solids , 2005 .

[9]  I. Kuprov,et al.  Bloch-Redfield-Wangsness theory engine implementation using symbolic processing software. , 2007, Journal of magnetic resonance.

[10]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[11]  K. Wüthrich,et al.  POMA: A Complete Mathematica Implementation of the NMR Product-Operator Formalism , 1993 .

[12]  Numerical stability of Lanczos methods , 1999, hep-lat/9909131.

[13]  E. B. Fel'dman,et al.  Dipolar temperature and multiple-quantum NMR dynamics in dipolar ordered-spin systems , 2007 .

[14]  M. Mehring,et al.  Object-Oriented Magnetic Resonance: Classes and Objects, Calculations and Computations , 2001 .

[15]  D. Sakellariou,et al.  Simulation of extended periodic systems of nuclear spins , 2000 .

[16]  Alexej Jerschow,et al.  MathNMR: spin and spatial tensor manipulations in Mathematica. , 2005, Journal of magnetic resonance.

[17]  L. Emsley,et al.  Numerical simulation of solid-state NMR experiments , 2000 .

[18]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[19]  N. Nielsen,et al.  Accessible states in Liouville space. A two-dimensional extension of the universal bound on spin dynamics applied to polarization transfer in INSM Spin- systems , 1992 .

[20]  E. B. Fel'dman,et al.  Multiple-quantum nuclear magnetic resonance spin dynamics in disordered rigid chains and rings , 2002 .

[21]  D. Levandier,et al.  H2+(X,v+=0~15,N+=1)+Heプロトン移動反応のパルス電界イオン化光電子二次イオンコインシデンス研究 , 2005 .

[22]  Mikhail Veshtort,et al.  SPINEVOLUTION: a powerful tool for the simulation of solid and liquid state NMR experiments. , 2006, Journal of magnetic resonance.

[23]  R. Freund Model reduction methods based on Krylov subspaces , 2003, Acta Numerica.

[24]  Ilya Kuprov,et al.  Polynomially scaling spin dynamics simulation algorithm based on adaptive state-space restriction. , 2007, Journal of magnetic resonance.

[25]  M Bak,et al.  SIMPSON: a general simulation program for solid-state NMR spectroscopy. , 2000, Journal of magnetic resonance.

[26]  Andrew Knyazev,et al.  Preconditioned Eigensolvers - an Oxymoron? , 1998 .

[27]  Serkan Gugercin,et al.  An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems , 2008 .

[28]  G. Moro,et al.  Calculation of ESR spectra and related Fokker–Planck forms by the use of the Lanczos algorithm , 1981 .

[29]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[30]  A. D. Bain,et al.  Simulation of many-spin system dynamics via sparse matrix methodology , 1997 .

[31]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[32]  N. Nielsen,et al.  2D bounds on polarization transfer involving quadrupolar spin nuclei , 1992 .