Interpreting Verbal Irony: Linguistic Strategies and the Connection to the Type of Semantic Incongruity

Human communication often involves the use of verbal irony or sarcasm, where the speakers usually mean the opposite of what they say. To better understand how verbal irony is expressed by the speaker and interpreted by the hearer we conduct a crowdsourcing task: given an utterance expressing verbal irony, users are asked to verbalize their interpretation of the speaker's ironic message. We propose a typology of linguistic strategies for verbal irony interpretation and link it to various theoretical linguistic frameworks. We design computational models to capture these strategies and present empirical studies aimed to answer three questions: (1) what is the distribution of linguistic strategies used by hearers to interpret ironic messages?; (2) do hearers adopt similar strategies for interpreting the speaker's ironic intent?; and (3) does the type of semantic incongruity in the ironic message (explicit vs. implicit) influence the choice of interpretation strategies by the hearers?

[1]  Roger J. Kreuz,et al.  The Production and Processing of Verbal Irony , 2000 .

[2]  Belén Méndez-Naya,et al.  Special issue on English intensifiers , 2008, English Language and Linguistics.

[3]  Rada Mihalcea,et al.  CASCADE: Contextual Sarcasm Detection in Online Discussion Forums , 2018, COLING.

[4]  Debanjan Ghosh,et al.  The Role of Conversation Context for Sarcasm Detection in Online Interactions , 2017, SIGDIAL Conference.

[5]  Björn Gambäck,et al.  Negation Scope Detection for Twitter Sentiment Analysis , 2015, WASSA@EMNLP.

[6]  Tejashri Inadarchand Jain,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2010 .

[7]  Bonnie L. Webber,et al.  Neural Networks For Negation Scope Detection , 2016, ACL.

[8]  Verónica Pérez-Rosas,et al.  Towards Multimodal Sarcasm Detection (An _Obviously_ Perfect Paper) , 2019, ACL.

[9]  Jian Su,et al.  Reasoning with Sarcasm by Reading In-Between , 2018, ACL.

[10]  Christian Burgers,et al.  Verbal irony: Use and effects in written discourse , 2006 .

[11]  Byron C. Wallace,et al.  Modelling Context with User Embeddings for Sarcasm Detection in Social Media , 2016, CoNLL.

[12]  Pushpak Bhattacharyya,et al.  Harnessing Cognitive Features for Sarcasm Detection , 2016, ACL.

[13]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[14]  A. Katz,et al.  Saying What You Don't Mean , 2004 .

[15]  Debanjan Ghosh,et al.  "With 1 follower I must be AWESOME : P". Exploring the role of irony markers in irony recognition , 2018, ICWSM.

[16]  C. Whissell,et al.  A Dictionary of Affect in Language: IV. Reliability, Validity, and Applications , 1986 .

[17]  Roi Reichart,et al.  Sarcasm SIGN: Interpreting Sarcasm with Sentiment Based Monolingual Machine Translation , 2017, ACL.

[18]  C. Burgers,et al.  Verbal Irony , 2012 .

[19]  Diana Maynard,et al.  Who cares about Sarcastic Tweets? Investigating the Impact of Sarcasm on Sentiment Analysis. , 2014, LREC.

[20]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[21]  Pushpak Bhattacharyya,et al.  Harnessing Context Incongruity for Sarcasm Detection , 2015, ACL.

[22]  Christopher D. Manning,et al.  Finding Contradictions in Text , 2008, ACL.

[23]  Antal van den Bosch,et al.  The perfect solution for detecting sarcasm in tweets #not , 2013, WASSA@NAACL-HLT.

[24]  Byron C. Wallace,et al.  Humans Require Context to Infer Ironic Intent (so Computers Probably do, too) , 2014, ACL.

[25]  Wei Luo,et al.  Speculation and Negation Scope Detection via Convolutional Neural Networks , 2016, EMNLP.

[26]  Nina Wacholder,et al.  Identification of nonliteral language in social media: A case study on sarcasm , 2016, J. Assoc. Inf. Sci. Technol..

[27]  R. Gibbs On the psycholinguistics of sarcasm. , 1986 .

[28]  Debanjan Ghosh,et al.  Sarcasm Analysis Using Conversation Context , 2018, CL.

[29]  Nathalie Aussenac-Gilles,et al.  Exploring the Impact of Pragmatic Phenomena on Irony Detection in Tweets: A Multilingual Corpus Study , 2017, EACL.

[30]  R. Kreuz,et al.  How to be sarcastic: The echoic reminder theory of verbal irony. , 1989 .

[31]  Debanjan Ghosh,et al.  Sarcastic or Not: Word Embeddings to Predict the Literal or Sarcastic Meaning of Words , 2015, EMNLP.

[32]  Ines Gloeckner,et al.  Relevance Communication And Cognition , 2016 .

[33]  Tony Veale,et al.  Fracking Sarcasm using Neural Network , 2016, WASSA@NAACL-HLT.

[34]  H. Haverkate A speech act analysis of irony , 1990 .

[35]  Ari Rappoport,et al.  Semi-Supervised Recognition of Sarcasm in Twitter and Amazon , 2010, CoNLL.

[36]  Siobhan Chapman Logic and Conversation , 2005 .

[37]  S. D. Lima,et al.  Contextual effects on metaphor comprehension in reading , 1984, Memory & cognition.

[38]  Penny M. Pexman,et al.  Context Incongruity and Irony Processing , 2003 .

[39]  Yue Zhang,et al.  Tweet Sarcasm Detection Using Deep Neural Network , 2016, COLING.

[40]  Ellen Riloff,et al.  Sarcasm as Contrast between a Positive Sentiment and Negative Situation , 2013, EMNLP.

[41]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[42]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[43]  Hermann Ney,et al.  The Alignment Template Approach to Statistical Machine Translation , 2004, CL.

[44]  Graeme Hirst,et al.  Computing Lexical Contrast , 2013, CL.

[45]  David Bamman,et al.  Contextualized Sarcasm Detection on Twitter , 2015, ICWSM.

[46]  Wei Lu,et al.  Learning with Structured Representations for Negation Scope Extraction , 2018, ACL.

[47]  Nina Wacholder,et al.  Identifying Sarcasm in Twitter: A Closer Look , 2011, ACL.

[48]  Patrick Pantel,et al.  VerbOcean: Mining the Web for Fine-Grained Semantic Verb Relations , 2004, EMNLP.

[49]  Rossano Schifanella,et al.  Detecting Sarcasm in Multimodal Social Platforms , 2016, ACM Multimedia.

[50]  Laurence R. Horn A Natural History of Negation , 1989 .

[51]  Hongbo Zhu,et al.  Sarcasm Detection with Self-matching Networks and Low-rank Bilinear Pooling , 2019, WWW.

[52]  R. Giora On irony and negation , 1995 .

[53]  Edward Nelson,et al.  Syntax and Semantics , 1974 .

[54]  Walid Magdy,et al.  Exploring Author Context for Detecting Intended vs Perceived Sarcasm , 2019, ACL.

[55]  A. Verhagen Constructions of Intersubjectivity: Discourse, Syntax, and Cognition , 2007 .

[56]  Iyad Rahwan,et al.  Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm , 2017, EMNLP.

[57]  Tony Veale,et al.  Magnets for Sarcasm: Making Sarcasm Detection Timely, Contextual and Very Personal , 2017, EMNLP.