On the asymptotics of maximum likelihood estimation for spatial linear models on a lattice

Spatial linear models and the corresponding likelihood-based statistical inference are important tools for the analysis of spatial lattice data and have been applied in a wide range of disciplines. However, understanding of the asymptotic properties of maximum likelihood estimates is limited. Here we consider a unified asymptotic framework that encompasses increasing domain, infill, and a combination of increasing domain and infill asymptotics. Under each type of asymptotics, we derive the asymptotic properties of maximum likelihood estimates. Our results show that the rates of convergence vary for different asymptotic types and under infill asymptotics, some of the model parameters estimates are inconsistent. A simulation study is conducted to examine the finite-sample properties of the maximum likelihood estimates.

[1]  Hao Zhang Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics , 2004 .

[2]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[3]  Wei-Liem Loh,et al.  Fixed-domain asymptotics for a subclass of Matern-type Gaussian random fields , 2005, math/0602302.

[4]  P. Robinson Efficient estimation of the semiparametric spatial autoregressive model , 2006 .

[5]  L. Waller,et al.  Applied Spatial Statistics for Public Health Data: Waller/Applied Spatial Statistics , 2004 .

[6]  Soumendra N. Lahiri,et al.  Central limit theorems for weighted sums of a spatial process under a class of stochastic and fixed designs , 2003 .

[7]  L. Waller,et al.  Applied Spatial Statistics for Public Health Data , 2004 .

[8]  D. Zimmerman,et al.  Towards reconciling two asymptotic frameworks in spatial statistics , 2005 .

[9]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[10]  Edzer J. Pebesma,et al.  Applied Spatial Data Analysis with R - Second Edition , 2008, Use R!.

[11]  Harry H. Kelejian,et al.  On the asymptotic distribution of the Moran I test statistic with applications , 2001 .

[12]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[13]  S. Bandyopadhyay,et al.  Analysis of Sabine river flow data using semiparametric spline modeling , 2011 .

[14]  K. Mardia,et al.  Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .

[15]  Halbert White,et al.  Estimation, inference, and specification analysis , 1996 .

[16]  W. Newey,et al.  Uniform Convergence in Probability and Stochastic Equicontinuity , 1991 .

[17]  V. Mandrekar,et al.  Fixed-domain asymptotic properties of tapered maximum likelihood estimators , 2009, 0909.0359.

[18]  Yoshihiro Yajima,et al.  Fourier analysis of irregularly spaced data on Rd , 2007 .

[19]  P. Robinson,et al.  Statistical inference on regression with spatial dependence , 2011 .

[20]  L. Anselin Spatial Econometrics: Methods and Models , 1988 .

[21]  Lung-fei Lee,et al.  Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models , 2004 .

[22]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[23]  Jun Zhu,et al.  Web-based Supplementary Materials for "On selection of spatial linear models for lattice data" , 2009 .

[24]  H. Rue,et al.  Fitting Gaussian Markov Random Fields to Gaussian Fields , 2002 .

[25]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[26]  Z. Ying Maximum likelihood estimation of parameters under a spatial sampling scheme , 1993 .

[27]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[28]  Noel A Cressie,et al.  On asymptotic distribution and asymptotic efficiency of least squares estimators of spatial variogram parameters , 2002 .

[29]  Carol A. Gotway,et al.  Statistical Methods for Spatial Data Analysis , 2004 .

[30]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .