The thermochemistry library ChemApp and its applications

Abstract ChemApp is a thermochemical software library which enables the user to perform thermochemical calculations across a wide spectrum of applications by providing an easily programmable interface to complex equilibrium calculation techniques for multicomponent, multiphase chemical systems. ChemApp is described, and an overview of selected application examples from areas such as metallurgy, gas phase and aqueous chemistry, combustion technology, corrosion, geochemistry, and more is given.

[1]  Patrice Chartrand,et al.  The modified quasi-chemical model: Part III. Two sublattices , 2001 .

[2]  B. Sundman Summary of Calphad XXXI in Stockholm 2002 - Abstracts , 2004 .

[3]  N. Møller,et al.  The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C , 1984 .

[4]  Bo Sundman,et al.  An assessment of the Fe-C-Si system , 1991 .

[5]  P. Hayes,et al.  The prediction and representation of phase equilibria and physicochemical properties in complex slag systems , 2003 .

[6]  O. Redlich,et al.  Algebraic Representation of Thermodynamic Properties and the Classification of Solutions , 1948 .

[7]  G. Hassall,et al.  Modelling of ladle glaze interactions , 2002 .

[8]  Shigeta Hara,et al.  Calculation of surface tension of liquid BiSn alloy using thermochemical application library ChemApp , 2000 .

[9]  A. Pelton A database and sublattice model for molten salts , 1988 .

[10]  M. Hupa,et al.  Deposition behaviour of molten alkali-rich fly ashes—development of a submodel for CFD applications , 2005 .

[11]  E. Jak,et al.  A quasi-chemical viscosity model for fully liquid slags in the Al2O3-CaO-‘FeO’-SiO2 system , 2005 .

[12]  E. Königsberger,et al.  Simulation of Industrial Processes Involving Concentrated Aqueous Solutions , 1999 .

[13]  H. Helgeson,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures; revised equations of state for the standard partial molal properties of ions and electrolytes , 1988 .

[14]  S. Saxena,et al.  A unified equation of state for fluids of C-H-O-N-S-Ar composition and their mixtures up to very high temperatures and pressures , 1992 .

[15]  W. Wiechert,et al.  Oxidation mechanisms of Cr‐containing steels and Ni‐base alloys at high temperatures Part II: Computer‐based simulation , 2006 .

[16]  U. Krupp,et al.  Experimental Characterization and Computer‐Based Simulation of Thermodynamics and Kinetics of Corrosion of Steels at High Temperatures , 2005 .

[17]  I. Hurtado,et al.  Predictions for isomer distributions of toxic dioxins and furans in selected industrial combustion processes. , 2002, Chemosphere.

[18]  W. A. Oates,et al.  Thermodynamic modelling of solid gallium arsenide , 1995 .

[19]  B. Blanpain,et al.  Water-cooled probe technique for the study of freeze lining formation , 2006 .

[20]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb , 1981 .

[21]  E. Königsberger,et al.  Comprehensive Model of Synthetic Bayer Liquors. Part 1. Overview , 2005 .

[22]  B. Blanpain,et al.  In situ observation of the direct and indirect dissolution of MgO particles in CaO–Al2O3–SiO2-based slags , 2007 .

[23]  Baxter David,et al.  OPTICORR Guide Book: Optimisation of In-Service Performance of Boiler Steels by Modelling High Temperature Corrosion , 2005 .

[24]  Markus Braun,et al.  CFD simulation of ash deposit formation in fixed bed biomass furnaces and boilers , 2006 .

[25]  A. Pelton,et al.  Assessing corrosion in oil refining and petrochemical processing , 2004 .

[26]  A. Pelton,et al.  Thermodynamic analysis of binary liquid silicates and prediction of ternary solution properties by modified quasichemical equations , 1987 .

[27]  M. S. Millman,et al.  Studies in development of clean steels : Part 1 Modelling aspects , 1998 .

[28]  Pertti Koukkari,et al.  Calculation of constrained equilibria by Gibbs energy minimization , 2006 .

[29]  M. Hupa,et al.  Ash deposition prediction in biomass fired fluidised bed boilers: combination of CFD and advanced fuel analysis , 2003 .

[30]  Gunnar Eriksson,et al.  FactSage thermochemical software and databases , 2002 .

[31]  Gunnar Eriksson,et al.  Calculation of sulfide capacities of multicomponent slags , 1993 .

[32]  J. Ågren,et al.  A regular solution model for phases with several components and sublattices, suitable for computer applications , 1981 .

[33]  J. Hirsch,et al.  A Statistical Model for Precipitation - Applications to Commercial Al-Mn-Mg-Fe-Si Alloys , 2002 .

[34]  M. Hoch Application of the Hoch-Arpshofen model to ternary, quaternary and larger systems , 1987 .

[35]  Arthur D. Pelton,et al.  A modified interaction parameter formalism for non-dilute solutions , 1986 .

[36]  Toshihiro Tanaka,et al.  Computing surface tensions of binary and ternary alloy systems with the Gibbsian method , 2006 .

[37]  Gunnar Eriksson,et al.  The modified quasi-chemical model: Part IV. Two-sublattice quadruplet approximation , 2001 .

[38]  C. Treadgold Behaviour of inclusions in RH vacuum degasser , 2003 .

[39]  C. Tsonopoulos,et al.  An empirical correlation of second virial coefficients , 1974 .

[40]  Gunnar Eriksson,et al.  The modified quasichemical model I—Binary solutions , 2000 .

[41]  U. Krupp,et al.  Oxidation mechanisms of Cr‐containing steels and Ni‐base alloys at high‐temperatures –. Part I: The different role of alloy grain boundaries , 2005 .

[42]  Sander Arnout,et al.  A Thermodynamic Model of the EAF Process for Stainless Steel , 2005 .

[43]  Arthur D. Pelton,et al.  Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach—Application to silicate slags , 1986 .

[44]  G. Eriksson,et al.  ChemSage—A computer program for the calculation of complex chemical equilibria , 1990 .

[45]  G Eriksson,et al.  Thermodynamic modeling of PCDD/Fs formation in thermal processes. , 2001, Environmental science & technology.