A Modeling Study of Soot and De-NOx Reaction Phenomena in SCRF Systems

[1]  M. Kubicek,et al.  Modelling of soot oxidation by NO2 in various types of diesel particulate filters , 2010 .

[2]  Enrico Tronconi,et al.  Study of a Fe–zeolite-based system as NH3-SCR catalyst for diesel exhaust aftertreatment , 2008 .

[3]  Michel Weibel,et al.  Numerical Simulation of Zeolite- and V-Based SCR-Catalytic Converters , 2007 .

[4]  T. Johnson Review of Diesel Emissions and Control , 2010 .

[5]  Anastassios M. Stamatelos,et al.  Modeling Catalytic Regeneration of Wall-Flow Particulate Filters , 1996 .

[6]  E. Tronconi,et al.  A comparative study of the NH3-SCR reactions over a Cu-zeolite and a Fe-zeolite catalyst , 2010 .

[7]  Ioannis P. Kandylas,et al.  Berechnung des Wärmeübergangs in Motorabgassystemen , 1998 .

[8]  Paul Joseph Andersen,et al.  Evaluation of SCR Catalyst Technology on Diesel Particulate Filters , 2009 .

[9]  J. Cruz-Reyes,et al.  HDS of DBT with Molybdenum Disulfide Catalysts Prepared by In Situ Decomposition of Alkyltrimethylammonium Thiomolybdates , 2011 .

[10]  O. Kröcher,et al.  The State of the Art in Selective Catalytic Reduction of NOx by Ammonia Using Metal‐Exchanged Zeolite Catalysts , 2008 .

[11]  M. Iwasaki,et al.  A comparative study of “standard”, “fast” and “NO2” SCR reactions over Fe/zeolite catalyst , 2010 .

[12]  G Koltsakis,et al.  Modelling of the selective catalytic NO x reduction in diesel exhaust including ammonia storage , 2007 .

[13]  Charles N. Satterfield,et al.  Mass transfer in heterogeneous catalysis , 1969 .

[14]  E. Fridell,et al.  Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5—The effect of changing the gas composition , 2006 .

[15]  Grigorios C. Koltsakis,et al.  NO2-Assisted Regeneration of Diesel Particulate Filters: A Modeling Study , 2002 .

[16]  Ashok Gopinath,et al.  A Kinetic Model for the Selective Catalytic Reduction of NOx with NH3 over an Fe-zeolite Catalyst , 2010 .

[17]  Zissis Samaras,et al.  “Model-based optimization methods of combined DPF+SCR systems” , 2007 .

[18]  Grigorios C. Koltsakis,et al.  Back-Diffusion Modeling of NO2 in Catalyzed Diesel Particulate Filters , 2004 .

[19]  Zissis Samaras,et al.  Study of Catalytic Regeneration Mechanisms in Diesel Particulate Filters Using Coupled Reaction-Diffusion Modeling , 2004 .

[20]  Grigorios C. Koltsakis,et al.  Modes of Catalytic Regeneration in Diesel Particulate Filters , 1997 .

[21]  Anastassios M. Stamatelos,et al.  Experimental and Modeling Study on Zeolite Catalysts for Diesel Engines , 2001 .

[22]  Anastassios M. Stamatelos,et al.  Computer aided engineering in diesel exhaust aftertreatment systems design , 1999 .

[23]  Michael J. Paratore,et al.  Evaluation of Cu-Based SCR/DPF Technology for Diesel Exhaust Emission Control , 2008 .

[24]  R. Hayes,et al.  Evaluating the effective diffusivity of methane in the washcoat of a honeycomb monolith , 2000 .

[25]  Z. Samaras,et al.  Modeling and Experimental Study of Uncontrolled Regenerations in SiC Filters with Fuel Borne Catalyst , 2004 .

[26]  Christine Kay Lambert,et al.  Laboratory Study of Soot, Propylene, and Diesel Fuel Impact on Zeolite-Based SCR Filter Catalysts , 2009 .

[27]  J. Moulijn,et al.  An optimal NOx assisted abatement of diesel soot in an advanced catalytic filter design , 2003 .

[28]  Christine Kay Lambert,et al.  Cu/Zeolite SCR on High Porosity Filters: Laboratory and Engine Performance Evaluations , 2009 .

[29]  Zissis Samaras,et al.  Reaction and Diffusion Phenomena in Catalyzed Diesel Particulate Filters , 2004 .