Semiclassical Sampling and Discretization of Certain Linear Inverse Problems
暂无分享,去创建一个
[1] Shlomo Sternberg,et al. Geometric Asymptotics, Revised edition , 1977 .
[2] Chase Mathison. Sampling in thermoacoustic tomography , 2019, ArXiv.
[3] Mouez Dimassi,et al. Spectral asymptotics in the semi-classical limit , 1999 .
[4] Maarten V. de Hoop,et al. Multiscale Discrete Approximations of Fourier Integral Operators Associated with Canonical Transformations and Caustics , 2012, Multiscale Model. Simul..
[5] F. Marvasti. Nonuniform sampling : theory and practice , 2001 .
[6] Leonid P. Yaroslavsky,et al. Can compressed sensing beat the Nyquist sampling rate? , 2015, ArXiv.
[7] A. Katsevich. RESOLUTION ANALYSIS OF INVERTING THE GENERALIZED RADON TRANSFORM FROM DISCRETE DATA IN R , 2019 .
[8] Peter Caday,et al. Computing Fourier integral operators with caustics , 2016 .
[9] R. Marks. Introduction to Shannon Sampling and Interpolation Theory , 1990 .
[10] F. Natterer,et al. Sampling in Fan Beam Tomography , 1993, SIAM J. Appl. Math..
[11] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[12] G. Uhlmann,et al. The Geodesic Ray Transform on Riemannian Surfaces with Conjugate Points , 2014, 1402.5559.
[13] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[14] Charles L. Epstein,et al. Introduction to the mathematics of medical imaging , 2003 .
[15] L. Hörmander,et al. The Analysis of Linear Partial Differential Operators IV , 1985 .
[16] F. Natterer. The Mathematics of Computerized Tomography , 1986 .
[17] Alexander Katsevich. A Local Approach to Resolution Analysis of Image Reconstruction in Tomography , 2017, SIAM J. Appl. Math..
[18] G. Uhlmann,et al. Thermoacoustic tomography with variable sound speed , 2009, 0902.1973.
[19] Yang Yang,et al. Multiwave tomography in a closed domain: averaged sharp time reversal , 2014, 1412.8262.
[20] Alexander Katsevich. Analysis of Reconstruction from Discrete Radon Transform Data in R^3 When the Function Has Jump Discontinuities , 2019, SIAM J. Appl. Math..
[21] David Middleton,et al. Sampling and Reconstruction of Wave-Number-Limited Functions in N-Dimensional Euclidean Spaces , 1962, Inf. Control..
[22] R. Bracewell. Strip Integration in Radio Astronomy , 1956 .
[23] S. Sternberg,et al. Semi-Classical Analysis , 2013 .
[24] Maarten V. de Hoop,et al. Multiscale Discrete Approximation of Fourier Integral Operators , 2012, Multiscale Model. Simul..
[25] A M Cormack. SAMPLING THE RADON TRANSFORM WITH BEAMS OF FINITE WIDTH , 1978, Physics in medicine and biology.
[26] F. Olver. Asymptotics and Special Functions , 1974 .
[27] H. Landau. Necessary density conditions for sampling and interpolation of certain entire functions , 1967 .
[28] A. Lindgren,et al. Sampling the 2-D Radon transform , 1981 .
[29] Laurent Demanet,et al. A Fast Butterfly Algorithm for the Computation of Fourier Integral Operators , 2008, Multiscale Model. Simul..
[30] V. Guillemin,et al. On some results of Gel fand in integral geometry , 1984 .
[31] M. Unser. Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.