Semiclassical Sampling and Discretization of Certain Linear Inverse Problems

We study sampling of Fourier Integral Operators $A$ at rates $sh$ with $s$ fixed and $h$ a small parameter. We show that the Nyquist sampling limit of $Af$ and $f$ are related by the canonical relation of $A$ using semiclassical analysis. We apply this analysis to the Radon transform in the parallel and the fan-beam coordinates. We explain and illustrate the optimal sampling rates for $Af$, the aliasing artifacts, and the effect of averaging (blurring) the data $Af$. We prove a Weyl type of estimate on the minimal number of sampling points to recover $f$ stably in terms of the volume of its semiclassical wave front set.

[1]  Shlomo Sternberg,et al.  Geometric Asymptotics, Revised edition , 1977 .

[2]  Chase Mathison Sampling in thermoacoustic tomography , 2019, ArXiv.

[3]  Mouez Dimassi,et al.  Spectral asymptotics in the semi-classical limit , 1999 .

[4]  Maarten V. de Hoop,et al.  Multiscale Discrete Approximations of Fourier Integral Operators Associated with Canonical Transformations and Caustics , 2012, Multiscale Model. Simul..

[5]  F. Marvasti Nonuniform sampling : theory and practice , 2001 .

[6]  Leonid P. Yaroslavsky,et al.  Can compressed sensing beat the Nyquist sampling rate? , 2015, ArXiv.

[7]  A. Katsevich RESOLUTION ANALYSIS OF INVERTING THE GENERALIZED RADON TRANSFORM FROM DISCRETE DATA IN R , 2019 .

[8]  Peter Caday,et al.  Computing Fourier integral operators with caustics , 2016 .

[9]  R. Marks Introduction to Shannon Sampling and Interpolation Theory , 1990 .

[10]  F. Natterer,et al.  Sampling in Fan Beam Tomography , 1993, SIAM J. Appl. Math..

[11]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[12]  G. Uhlmann,et al.  The Geodesic Ray Transform on Riemannian Surfaces with Conjugate Points , 2014, 1402.5559.

[13]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[14]  Charles L. Epstein,et al.  Introduction to the mathematics of medical imaging , 2003 .

[15]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators IV , 1985 .

[16]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[17]  Alexander Katsevich A Local Approach to Resolution Analysis of Image Reconstruction in Tomography , 2017, SIAM J. Appl. Math..

[18]  G. Uhlmann,et al.  Thermoacoustic tomography with variable sound speed , 2009, 0902.1973.

[19]  Yang Yang,et al.  Multiwave tomography in a closed domain: averaged sharp time reversal , 2014, 1412.8262.

[20]  Alexander Katsevich Analysis of Reconstruction from Discrete Radon Transform Data in R^3 When the Function Has Jump Discontinuities , 2019, SIAM J. Appl. Math..

[21]  David Middleton,et al.  Sampling and Reconstruction of Wave-Number-Limited Functions in N-Dimensional Euclidean Spaces , 1962, Inf. Control..

[22]  R. Bracewell Strip Integration in Radio Astronomy , 1956 .

[23]  S. Sternberg,et al.  Semi-Classical Analysis , 2013 .

[24]  Maarten V. de Hoop,et al.  Multiscale Discrete Approximation of Fourier Integral Operators , 2012, Multiscale Model. Simul..

[25]  A M Cormack SAMPLING THE RADON TRANSFORM WITH BEAMS OF FINITE WIDTH , 1978, Physics in medicine and biology.

[26]  F. Olver Asymptotics and Special Functions , 1974 .

[27]  H. Landau Necessary density conditions for sampling and interpolation of certain entire functions , 1967 .

[28]  A. Lindgren,et al.  Sampling the 2-D Radon transform , 1981 .

[29]  Laurent Demanet,et al.  A Fast Butterfly Algorithm for the Computation of Fourier Integral Operators , 2008, Multiscale Model. Simul..

[30]  V. Guillemin,et al.  On some results of Gel fand in integral geometry , 1984 .

[31]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.