Three-dimensional Gabor feature extraction for hyperspectral imagery classification using a memetic framework

Feature extraction based on three-dimensional (3D) wavelet transform is capable of improving the classification accuracy of hyperspectral imagery data by simultaneously capturing the geometrical and statistical spectral-spatial structure of the data. Nevertheless, the design of wavelets is always proceeded with empirical parameters, which tends to involve a large number of irrelevant and redundant spectral-spatial features and results in suboptimal configuration. This paper proposes a 3D Gabor wavelet feature extraction in a memetic framework, named M3DGFE, for hyperspectral imagery classification. Particularly, the parameter setting of 3D Gabor wavelet feature extraction is optimized using memetic algorithm so that discriminative and parsimonious feature set is acquired for accurate classification. M3DGFE is characterized by an efficient fitness evaluation function and a pruning local search. In the fitness evaluation function, a new concept of redundancy-free relevance based on conditional mutual information is proposed to measure the goodness of the extracted candidate features. The pruning local search is specially designed to eliminate both irrelevant and redundant features without sacrificing the discriminability of the obtained feature subset. M3DGFE is tested on both pixel-level and image-level classification using real-world hyperspectral remote sensing data and hyperspectral face data, respectively. The experimental results show that M3DGFE achieves promising classification accuracy with parsimonious feature subset.

[1]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[2]  Jun Zhou,et al.  Hyperspectral Image Classification Based on Structured Sparse Logistic Regression and Three-Dimensional Wavelet Texture Features , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Natalio Krasnogor,et al.  Studies on the theory and design space of memetic algorithms , 2002 .

[4]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[5]  J. Zurada,et al.  Identification of Full and Partial Class Relevant Genes , 2010, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[6]  Masoud Nikravesh,et al.  Feature Extraction - Foundations and Applications , 2006, Feature Extraction.

[7]  Yew-Soon Ong,et al.  Memetic Computation—Past, Present & Future [Research Frontier] , 2010, IEEE Computational Intelligence Magazine.

[8]  Maoguo Gong,et al.  Natural and Remote Sensing Image Segmentation Using Memetic Computing , 2010, IEEE Computational Intelligence Magazine.

[9]  Robert I. Damper,et al.  Band Selection for Hyperspectral Image Classification Using Mutual Information , 2006, IEEE Geoscience and Remote Sensing Letters.

[10]  Zhen Ji,et al.  Towards a Memetic Feature Selection Paradigm [Application Notes] , 2010, IEEE Computational Intelligence Magazine.

[11]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[12]  Jiasong Zhu,et al.  Discriminative Gabor Feature Selection for Hyperspectral Image Classification , 2013, IEEE Geoscience and Remote Sensing Letters.

[13]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[14]  Farid Melgani,et al.  Swarm Intelligence Approach to Wavelet Design for Hyperspectral Image Classification , 2009, IEEE Geoscience and Remote Sensing Letters.

[15]  Claude E. Shannon,et al.  A mathematical theory of communication , 1948, MOCO.

[16]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[17]  Jon Atli Benediktsson,et al.  Kernel Principal Component Analysis for the Classification of Hyperspectral Remote Sensing Data over Urban Areas , 2009, EURASIP J. Adv. Signal Process..

[18]  Dennis Gabor,et al.  Theory of communication , 1946 .

[19]  Carlos Cotta,et al.  Memetic algorithms and memetic computing optimization: A literature review , 2012, Swarm Evol. Comput..

[20]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[21]  FauvelMathieu,et al.  Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas , 2009 .

[22]  Marko Robnik-Sikonja,et al.  Theoretical and Empirical Analysis of ReliefF and RReliefF , 2003, Machine Learning.

[23]  Xin Yao,et al.  Memetic Algorithm With Extended Neighborhood Search for Capacitated Arc Routing Problems , 2009, IEEE Transactions on Evolutionary Computation.

[24]  Geoffrey J McLachlan,et al.  Selection bias in gene extraction on the basis of microarray gene-expression data , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Quan Pan,et al.  Studies on Hyperspectral Face Recognition in Visible Spectrum With Feature Band Selection , 2010, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[26]  Juha Reunanen,et al.  Overfitting in Making Comparisons Between Variable Selection Methods , 2003, J. Mach. Learn. Res..

[27]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[28]  Lorenzo Bruzzone,et al.  Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Xin Yao,et al.  A Memetic Algorithm for Periodic Capacitated Arc Routing Problem , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[30]  William E. Higgins,et al.  Efficient Gabor filter design for texture segmentation , 1996, Pattern Recognit..

[31]  Chein-I. Chang Hyperspectral Imaging: Techniques for Spectral Detection and Classification , 2003 .

[32]  Glenn Healey,et al.  Hyperspectral Region Classification Using a Three-Dimensional Gabor Filterbank , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Bin Li,et al.  Two-stage ensemble memetic algorithm: Function optimization and digital IIR filter design , 2013, Inf. Sci..

[34]  Nicolas H. Younan,et al.  Wavelet domain statistical hyperspectral soil texture classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[36]  Fabio Caraffini,et al.  An analysis on separability for Memetic Computing automatic design , 2014, Inf. Sci..

[37]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[39]  Madhu Chetty,et al.  Clustered Memetic Algorithm With Local Heuristics for Ab Initio Protein Structure Prediction , 2013, IEEE Transactions on Evolutionary Computation.

[40]  D. Gabor,et al.  Theory of communication. Part 1: The analysis of information , 1946 .

[41]  Masoud Nikravesh,et al.  Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing) , 2006 .

[42]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[43]  LinLin Shen,et al.  3D Gabor wavelets for evaluating SPM normalization algorithm , 2008, Medical Image Anal..

[44]  Jacek M. Zurada,et al.  Identification of Full and Partial Class Relevant Genes , 2010, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[45]  Sylvain Douté,et al.  WAVANGLET: An Efficient Supervised Classifier for Hyperspectral Images , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Javier Ruiz-del-Solar,et al.  Recognition of Faces in Unconstrained Environments: A Comparative Study , 2009, EURASIP J. Adv. Signal Process..

[47]  H. B. Mann,et al.  On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other , 1947 .

[48]  Jun Zhou,et al.  Structured sparse model based feature selection and classification for hyperspectral imagery , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[49]  LinLin Shen,et al.  Memetic Three-Dimensional Gabor Feature Extraction for Hyperspectral Imagery Classification , 2012, ICSI.

[50]  Pablo Moscato,et al.  Memetic algorithms: a short introduction , 1999 .

[51]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[52]  A. Agarwal,et al.  Efficient Hierarchical-PCA Dimension Reduction for Hyperspectral Imagery , 2007, 2007 IEEE International Symposium on Signal Processing and Information Technology.

[53]  Zhen Ji,et al.  Feature extraction and selection hybrid algorithm for hyperspectral imagery classification , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[54]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[55]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[56]  Ferrante Neri,et al.  Memetic Compact Differential Evolution for Cartesian Robot Control , 2010, IEEE Computational Intelligence Magazine.

[57]  LinLin Shen,et al.  Three-Dimensional Gabor Wavelets for Pixel-Based Hyperspectral Imagery Classification , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[58]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[59]  Gustavo Camps-Valls,et al.  Composite kernels for hyperspectral image classification , 2006, IEEE Geoscience and Remote Sensing Letters.

[60]  LinLin Shen,et al.  A review on Gabor wavelets for face recognition , 2006, Pattern Analysis and Applications.

[61]  Anne H. Schistad Solberg,et al.  Sparse Inverse Covariance Estimates for Hyperspectral Image Classification , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[62]  Paul Scheunders,et al.  Generic wavelet-based hyperspectral classification applied to vegetation stress detection , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[63]  Kay Chen Tan,et al.  A Multi-Facet Survey on Memetic Computation , 2011, IEEE Transactions on Evolutionary Computation.