Mechanically flexible optically transparent silicon fabric with high thermal budget devices from bulk silicon (100)

Today’s information age is driven by silicon based electronics. For nearly four decades semiconductor industry has perfected the fabrication process of continuingly scaled transistor – heart of modern day electronics. In future, silicon industry will be more pervasive, whose application will range from ultra-mobile computation to bio-integrated medical electronics. Emergence of flexible electronics opens up interesting opportunities to expand the horizon of electronics industry. However, silicon – industry’s darling material is rigid and brittle. Therefore, we report a generic batch fabrication process to convert nearly any silicon electronics into a flexible one without compromising its (i) performance; (ii) ultra-large-scale-integration complexity to integrate billions of transistors within small areas; (iii) state-of-the-art process compatibility, (iv) advanced materials used in modern semiconductor technology; (v) the most widely used and well-studied low-cost substrate mono-crystalline bulk silicon (100). In our process, we make trenches using anisotropic reactive ion etching (RIE) in the inactive areas (in between the devices) of a silicon substrate (after the devices have been fabricated following the regular CMOS process), followed by a dielectric based spacer formation to protect the sidewall of the trench and then performing an isotropic etch to create caves in silicon. When these caves meet with each other the top portion of the silicon with the devices is ready to be peeled off from the bottom silicon substrate. Release process does not need to use any external support. Released silicon fabric (25 m thick) is mechanically flexible (5 mm bending radius) and the trenches make it semi-transparent (transparency of 7%).

[1]  Muhammad M. Hussain,et al.  Silicon fabric for multi-functional applications , 2013, 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII).

[2]  Muhammad M. Hussain,et al.  Flexible semi‐transparent silicon (100) fabric with high‐k/metal gate devices , 2013 .

[3]  M. Hussain,et al.  Back Cover: Flexible semi-transparent silicon (100) fabric with high-k/metal gate devices (Phys. Status Solidi RRL 3/2013) , 2013 .

[4]  M. M. Hussain,et al.  High-Performance Silicon Nanotube Tunneling FET for Ultralow-Power Logic Applications , 2013, IEEE Transactions on Electron Devices.

[5]  Davood Shahrjerdi,et al.  Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. , 2013, Nano letters.

[6]  M. Gaynes,et al.  Advanced flexible CMOS integrated circuits on plastic enabled by controlled spalling technology , 2012, 2012 International Electron Devices Meeting.

[7]  Dewei Xu,et al.  High-performance flexible thin-film transistors exfoliated from bulk wafer. , 2012, Nano letters.

[8]  Muhammad M. Hussain,et al.  Contact engineering for nano‐scale CMOS , 2012 .

[9]  M. M. Hussain,et al.  Mechanically flexible optically transparent porous mono-crystalline silicon substrate , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).

[10]  Mark Bohr,et al.  The evolution of scaling from the homogeneous era to the heterogeneous era , 2011, 2011 International Electron Devices Meeting.

[11]  Casey Smith,et al.  Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits. , 2011, Nano letters.

[12]  J. Rogers,et al.  Synthesis, assembly and applications of semiconductor nanomembranes , 2011, Nature.

[13]  John A. Rogers,et al.  Fabrication of Releasable Single‐Crystal Silicon–Metal Oxide Field‐Effect Devices and Their Deterministic Assembly on Foreign Substrates , 2011 .

[14]  Raeed H. Chowdhury,et al.  Epidermal Electronics , 2011, Science.

[15]  Weidong Zhou,et al.  High-performance flexible thin-film transistors fabricated using print-transferrable polycrystalline silicon membranes on a plastic substrate , 2011 .

[16]  Bo Zhang,et al.  Materials for Printable, Transparent, and Low‐Voltage Transistors , 2011 .

[17]  Weidong Zhou,et al.  12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics. , 2010, Small.

[18]  Weidong Zhou,et al.  Flexible electronics: 12‐GHz Thin‐Film Transistors on Transferrable Silicon Nanomembranes for High‐Performance Flexible Electronics (Small 22/2010) , 2010 .

[19]  J. Burghartz Ultra-thin Chip Technology and Applications , 2010 .

[20]  Yonggang Huang,et al.  Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. , 2010, Nature materials.

[21]  J. Rogers,et al.  GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies , 2010, Nature.

[22]  Jhonathan P. Rojas,et al.  Self-powered integrated systems-on-chip (energy chip) , 2010, Defense + Commercial Sensing.

[23]  P. Kirsch,et al.  Alternative approaches for high-k/metal gate CMOS: Low temperature process (gate last) and SiGe channel , 2010, Proceedings of 2010 International Symposium on VLSI Technology, System and Application.

[24]  Hsing-Huang Tseng,et al.  Gate-First Integration of Tunable Work Function Metal Gates of Different Thicknesses Into High-$k$/Metal Gates CMOS FinFETs for Multi- $V_{\rm Th}$ Engineering , 2010, IEEE Transactions on Electron Devices.

[25]  매튜 레오,et al.  Method of forming an electronic device using a separation-enhancing species , 2009 .

[26]  W. Appel,et al.  A New Fabrication and Assembly Process for Ultrathin Chips , 2009, IEEE Transactions on Electron Devices.

[27]  Pallab Bhattacharya,et al.  Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes , 2009 .

[28]  J. Rogers,et al.  Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2008, Nature materials.

[29]  H. Reichl,et al.  Highly integrated flexible electronic Circuits and Modules , 2008, 2008 3rd International Microsystems, Packaging, Assembly & Circuits Technology Conference.

[30]  P. Kirsch,et al.  Additive Process Induced Strain (APIS) Technology for L g = 30nm Band-Edge High-k/Metal Gate nMOSFET , 2008 .

[31]  John A Rogers,et al.  Semiconductor wires and ribbons for high-performance flexible electronics. , 2008, Angewandte Chemie.

[32]  S. Thompson,et al.  Comparison of Uniaxial Wafer Bending and Contact-Etch-Stop-Liner Stress Induced Performance Enhancement on Double-Gate FinFETs , 2008, IEEE Electron Device Letters.

[33]  Placid Mathew Ferreira,et al.  Printable Single‐Crystal Silicon Micro/Nanoscale Ribbons, Platelets and Bars Generated from Bulk Wafers , 2007 .

[34]  P. Kirsch,et al.  Integration Challenges and Opportunities for Nanometer Scale CMOSFET with Metal/High-k Gate Stack , 2007 .

[35]  John A. Rogers,et al.  Inorganic Semiconductors for Flexible Electronics , 2007 .

[36]  Jun Liu,et al.  Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. , 2007, Nature nanotechnology.

[37]  T. Gaborski,et al.  Charge- and size-based separation of macromolecules using ultrathin silicon membranes , 2007, Nature.

[38]  G. Bersuker,et al.  A Novel Electrode-Induced Strain Engineering for High Performance SOI FinFET utilizing Si (1hannel for Both N and PMOSFETs , 2006, 2006 International Electron Devices Meeting.

[39]  R. Choi,et al.  Highly Manufacturable 45nm LSTP CMOSFETs Using Novel Dual High-k and Dual Metal Gate CMOS Integration , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[40]  Zhenan Bao,et al.  High‐Performance Organic Single‐Crystal Transistors on Flexible Substrates , 2006 .

[41]  Bruce E. Gnade,et al.  Thermal annealing effects on a representative high-k/metal film stack , 2006 .

[42]  J. M. Kim,et al.  Development of High-Performance Organic Thin-Film Transistors for Large-Area Displays , 2006 .

[43]  D. Gilmer,et al.  A scalable and highly manufacturable single metal gate/high-k CMOS integration for sub-32nm technology for LSTP applications , 2006, 2009 Symposium on VLSI Technology.

[44]  John A. Rogers,et al.  Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers , 2006 .

[45]  M. Lagally,et al.  Elastically relaxed free-standing strained-silicon nanomembranes , 2006, Nature materials.

[46]  Thomas N. Jackson,et al.  All-organic active matrix flexible display , 2006 .

[47]  A. Morpurgo,et al.  Reproducible low contact resistance in rubrene single-crystal field-effect transistors with nickel electrodes , 2005, cond-mat/0511333.

[48]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Wolfgang Kowalsky,et al.  Large Area Electronics Using Printing Methods , 2005, Proceedings of the IEEE.

[50]  Karl R. Amundson,et al.  A scalable manufacturing process for flexible active‐matrix e‐paper displays , 2005 .

[51]  B.H. Lee,et al.  Integration of dual metal gate CMOS with TaSiN (NMOS) and Ru (PMOS) gate electrodes on HfO/sub 2/ gate dielectric , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[52]  C. Kloc,et al.  Single-crystal field-effect transistors based on copper phthalocyanine , 2004, cond-mat/0409353.

[53]  Michael A. Haase,et al.  Recent Progress in Organic Electronics: Materials, Devices, and Processes , 2004 .

[54]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[55]  Xin Zhang,et al.  Intrinsic stress generation and relaxation of plasma-enhanced chemical vapor deposited oxide during deposition and subsequent thermal cycling , 2003 .

[56]  S. Fonash,et al.  High-performance poly-Si TFTs on plastic substrates using a nano-structured separation layer approach , 2003, IEEE Electron Device Letters.

[57]  V. R. Raju,et al.  Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[58]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[59]  A. van den Berg,et al.  Micromachining of buried micro channels in silicon , 2000, Journal of Microelectromechanical Systems.

[60]  C. Landesberger,et al.  Carrier techniques for thin wafer processing , 2007 .

[61]  N. C. MacDonald,et al.  SCREAM I: A single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures , 1994 .