Parallel Processing via a Dual Olfactory Pathway in the Honeybee

In their natural environment, animals face complex and highly dynamic olfactory input. Thus vertebrates as well as invertebrates require fast and reliable processing of olfactory information. Parallel processing has been shown to improve processing speed and power in other sensory systems and is characterized by extraction of different stimulus parameters along parallel sensory information streams. Honeybees possess an elaborate olfactory system with unique neuronal architecture: a dual olfactory pathway comprising a medial projection-neuron (PN) antennal lobe (AL) protocerebral output tract (m-APT) and a lateral PN AL output tract (l-APT) connecting the olfactory lobes with higher-order brain centers. We asked whether this neuronal architecture serves parallel processing and employed a novel technique for simultaneous multiunit recordings from both tracts. The results revealed response profiles from a high number of PNs of both tracts to floral, pheromonal, and biologically relevant odor mixtures tested over multiple trials. PNs from both tracts responded to all tested odors, but with different characteristics indicating parallel processing of similar odors. Both PN tracts were activated by widely overlapping response profiles, which is a requirement for parallel processing. The l-APT PNs had broad response profiles suggesting generalized coding properties, whereas the responses of m-APT PNs were comparatively weaker and less frequent, indicating higher odor specificity. Comparison of response latencies within and across tracts revealed odor-dependent latencies. We suggest that parallel processing via the honeybee dual olfactory pathway provides enhanced odor processing capabilities serving sophisticated odor perception and olfactory demands associated with a complex olfactory world of this social insect.

[1]  R. Menzel,et al.  GABA‐immunoreactive neurons in the mushroom bodies of the honeybee: An electron microscopic study , 2001, The Journal of comparative neurology.

[2]  M. Giurfa,et al.  Understanding the Logics of Pheromone Processing in the Honeybee Brain: From Labeled-Lines to Across-Fiber Patterns , 2007, Frontiers in behavioral neuroscience.

[3]  M S Lewicki,et al.  A review of methods for spike sorting: the detection and classification of neural action potentials. , 1998, Network.

[4]  V. Jayaraman,et al.  Encoding and Decoding of Overlapping Odor Sequences , 2006, Neuron.

[5]  M. Blum,et al.  Alarm responses caused by newly identified compounds derived from the honeybee sting , 2004, Journal of Chemical Ecology.

[6]  J. Sandoz Behavioral and Neurophysiological Study of Olfactory Perception and Learning in Honeybees , 2011, Front. Syst. Neurosci..

[7]  M. Nishikawa,et al.  Higher brain centers for social tasks in worker ants, Camponotus japonicus , 2012, The Journal of comparative neurology.

[8]  J. Hildebrand,et al.  Multitasking in the Olfactory System: Context-Dependent Responses to Odors Reveal Dual GABA-Regulated Coding Mechanisms in Single Olfactory Projection Neurons , 1998, The Journal of Neuroscience.

[9]  E D Young,et al.  Linear and nonlinear pathways of spectral information transmission in the cochlear nucleus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. Laurent,et al.  Conditional modulation of spike-timing-dependent plasticity for olfactory learning , 2012, Nature.

[11]  C. Mccrohan,et al.  Electrical activity of caudal neurosecretory neurons in seawater- and freshwater-adapted flounder: responses to cholinergic agonists , 2003, Journal of Experimental Biology.

[12]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[13]  Martin Giurfa,et al.  Differential coding by two olfactory subsystems in the honeybee brain. , 2012, Journal of neurophysiology.

[14]  Wolfgang Rössler,et al.  Organization of the olfactory pathway and odor processing in the antennal lobe of the ant Camponotus floridanus , 2008, The Journal of comparative neurology.

[15]  D. Tolhurst,et al.  Characterizing the sparseness of neural codes , 2001, Network.

[16]  Thomas D. Seeley,et al.  Adaptive significance of the age polyethism schedule in honeybee colonies , 1982, Behavioral Ecology and Sociobiology.

[17]  Leslie M Kay,et al.  Information processing in the olfactory systems of insects and vertebrates. , 2006, Seminars in cell & developmental biology.

[18]  Mati Joshua,et al.  Quantifying the isolation quality of extracellularly recorded action potentials , 2007, Journal of Neuroscience Methods.

[19]  Bertram Gerber,et al.  The Drosophila larva as a model for studying chemosensation and chemosensory learning: a review. , 2007, Chemical senses.

[20]  N. Wittenburg,et al.  Transformation from temporal to rate coding in a somatosensory thalamocortical pathway , 2022 .

[21]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[22]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[23]  B. Gerber,et al.  A Behavioral Odor Similarity “Space” in Larval Drosophila , 2011, Chemical senses.

[24]  R. Menzel,et al.  Mushroom Body Output Neurons Encode Odor–Reward Associations , 2011, The Journal of Neuroscience.

[25]  A. Brandstaetter,et al.  Distributed representation of social odors indicates parallel processing in the antennal lobe of ants. , 2011, Journal of neurophysiology.

[26]  G. Laurent,et al.  Impaired odour discrimination on desynchronization of odour-encoding neural assemblies , 1997, Nature.

[27]  Rachel I. Wilson,et al.  Olfactory processing and behavior downstream from highly selective receptor neurons , 2007, Nature Neuroscience.

[28]  Fred Wolf,et al.  Olfactory Coding with Patterns of Response Latencies , 2010, Neuron.

[29]  Maxim Bazhenov,et al.  Frequency Transitions in Odor-Evoked Neural Oscillations , 2009, Neuron.

[30]  S. Sachse,et al.  The spatial representation of chemical structures in the antennal lobe of honeybees: steps towards the olfactory code , 1999, The European journal of neuroscience.

[31]  B. Smith,et al.  Associative Conditioning Tunes Transient Dynamics of Early Olfactory Processing , 2009, The Journal of Neuroscience.

[32]  J. Fellous,et al.  The Processing of Color, Motion, and Stimulus Timing Are Anatomically Segregated in the Bumblebee Brain , 2008, The Journal of Neuroscience.

[33]  M. Spivak,et al.  Hygienic behavior in the honey bee (Apis mellifera L.) and the modulatory role of octopamine. , 2003, Journal of neurobiology.

[34]  R. Menzel,et al.  Long-term memory and response generalization in mushroom body extrinsic neurons in the honeybee Apis mellifera , 2012, Journal of Experimental Biology.

[35]  G. Laurent,et al.  Intrinsic and Circuit Properties Favor Coincidence Detection for Decoding Oscillatory Input , 2004, The Journal of Neuroscience.

[36]  Glenn C. Turner,et al.  Olfactory representations by Drosophila mushroom body neurons. , 2008, Journal of neurophysiology.

[37]  Friedrich-Wilhelm Schrmann Bemerkungen zur funktion der corpora pedunculata im gehirn der insekten aus morphologischer sicht@@@On the functional anatomy of the corpora pedunculata in insects , 1974 .

[38]  G. Laurent,et al.  Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts , 2007, Nature.

[39]  J. Juranek,et al.  A sensory brain map for each behavior? , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Stopfer,et al.  Functional Analysis of a Higher Olfactory Center, the Lateral Horn , 2012, The Journal of Neuroscience.

[41]  M. Goodale,et al.  Two visual systems re-viewed , 2008, Neuropsychologia.

[42]  Robert A. A. Campbell,et al.  Cellular-Resolution Population Imaging Reveals Robust Sparse Coding in the Drosophila Mushroom Body , 2011, The Journal of Neuroscience.

[43]  S. Sachse,et al.  Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. , 2002, Journal of neurophysiology.

[44]  J. Rauschecker,et al.  Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing , 2009, Nature Neuroscience.

[45]  Baranidharan Raman,et al.  Temporally Diverse Firing Patterns in Olfactory Receptor Neurons Underlie Spatiotemporal Neural Codes for Odors , 2010, The Journal of Neuroscience.

[46]  M. Giurfa,et al.  Antennal lobe processing increases separability of odor mixture representations in the honeybee. , 2010, Journal of neurophysiology.

[47]  Maxim Bazhenov,et al.  Using the Structure of Inhibitory Networks to Unravel Mechanisms of Spatiotemporal Patterning , 2011, Neuron.

[48]  Franco Lepore,et al.  Dual processing streams in chemosensory perception , 2012, Front. Hum. Neurosci..

[49]  R. Menzel,et al.  Optical imaging of concealed brain activity using a gold mirror in honeybees. , 2012, Journal of insect physiology.

[50]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[51]  M. Nawrot Dynamics of sensory processing in the dual olfactory pathway of the honeybee , 2012, Apidologie.

[52]  D. Wesson,et al.  Parallel Odor Processing by Two Anatomically Distinct Olfactory Bulb Target Structures , 2012, PloS one.

[53]  Ryohei Kanzaki,et al.  Reconstructing the Population Activity of Olfactory Output Neurons that Innervate Identifiable Processing Units , 2008, Frontiers in neural circuits.

[54]  Rachel I. Wilson,et al.  Understanding the functional consequences of synaptic specialization: insight from the Drosophila antennal lobe , 2011, Current Opinion in Neurobiology.

[55]  B. McNaughton,et al.  Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex , 1995, Journal of Neuroscience Methods.

[56]  M. Heisenberg Mushroom body memoir: from maps to models , 2003, Nature Reviews Neuroscience.

[57]  T. Seeley,et al.  Honeybee Ecology: A Study of Adaptation in Social Life , 1985 .

[58]  G. Robinson,et al.  Neurochemicals aid bee nestmate recognition , 1999, Nature.

[59]  C. Mccrohan,et al.  Precise and Fuzzy Coding by Olfactory Sensory Neurons , 2008, The Journal of Neuroscience.

[60]  Menzel,et al.  The role of glomeruli in the neural representation of odours: results from optical recording studies. , 2001, Journal of insect physiology.

[61]  Zhiyuan Lu,et al.  Age‐related plasticity in the synaptic ultrastructure of neurons in the mushroom body calyx of the adult honeybee Apis mellifera , 2012, The Journal of comparative neurology.

[62]  M. Gauthier,et al.  Neurotransmitter Systems in the Honey Bee Brain: Functions in Learning and Memory , 2012 .

[63]  B. Grünewald,et al.  Physiological properties and response modulations of mushroom body feedback neurons during olfactory learning in the honeybee, Apis mellifera , 1999, Journal of Comparative Physiology A.

[64]  B. Hansson,et al.  Evolution of Insect Olfaction , 2011, Neuron.

[65]  M. Mizunami,et al.  Sensory responses and movement-related activities in extrinsic neurons of the cockroach mushroom bodies , 1999, Journal of Comparative Physiology A.

[66]  Jürgen Rybak,et al.  The Digital Honey Bee Brain Atlas , 2012 .

[67]  X. Sun,et al.  Odour quality processing by bee antennal lobe interneurones , 1993 .

[68]  Glenn C. Turner,et al.  Oscillations and Sparsening of Odor Representations in the Mushroom Body , 2002, Science.

[69]  W. Witthöft,et al.  Absolute anzahl und verteilung der zellen im him der honigbiene , 2004, Zeitschrift für Morphologie der Tiere.

[70]  Stefan Rotter,et al.  Elimination of response latency variability in neuronal spike trains , 2003, Biological Cybernetics.

[71]  Gilles Laurent,et al.  A Simple Connectivity Scheme for Sparse Coding in an Olfactory System , 2007, The Journal of Neuroscience.

[72]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[73]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[74]  G. Laurent,et al.  Role of GABAergic Inhibition in Shaping Odor-Evoked Spatiotemporal Patterns in the Drosophila Antennal Lobe , 2005, The Journal of Neuroscience.

[75]  Randolf Menzel,et al.  Parallel Representation of Stimulus Identity and Intensity in a Dual Pathway Model Inspired by the Olfactory System of the Honeybee , 2011, Front. Neuroeng..

[76]  B. Grünewald,et al.  Morphology of feedback neurons in the mushroom body of the honeybee, Apis mellifera , 1999, The Journal of comparative neurology.

[77]  R. Menzel,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[78]  E. Callaway,et al.  Parallel processing strategies of the primate visual system , 2009, Nature Reviews Neuroscience.

[79]  I. Meinertzhagen,et al.  Synaptic organization of the mushroom body calyx in Drosophila melanogaster , 2002, The Journal of comparative neurology.

[80]  V. Jayaraman,et al.  Intensity versus Identity Coding in an Olfactory System , 2003, Neuron.

[81]  Rainer W Friedrich,et al.  Temporal Dynamics and Latency Patterns of Receptor Neuron Input to the Olfactory Bulb , 2006, The Journal of Neuroscience.

[82]  Schürmann Fw,et al.  [On the functional anatomy of the corpora pedunculata in insects (author's transl)]. , 1974 .

[83]  R. Quiroga Spike sorting , 2012, Current Biology.

[84]  Alan Carleton,et al.  Dynamic Ensemble Odor Coding in the Mammalian Olfactory Bulb: Sensory Information at Different Timescales , 2008, Neuron.

[85]  N. Strausfeld Organization of the honey bee mushroom body: Representation of the calyx within the vertical and gamma lobes , 2002, The Journal of comparative neurology.

[86]  R. Menzel,et al.  Learning-Related Plasticity in PE1 and Other Mushroom Body-Extrinsic Neurons in the Honeybee Brain , 2007, The Journal of Neuroscience.

[87]  I. Williams,et al.  Nasonov pheromone of the honey bee,Apis mellifera L. (Hymenoptera: Apidae) , 1980, Journal of Chemical Ecology.

[88]  D. Tolhurst,et al.  Characterizing the sparseness of neural codes , 2001 .

[89]  C. Mehring,et al.  Inference of hand movements from local field potentials in monkey motor cortex , 2003, Nature Neuroscience.

[90]  Dominique Martinez,et al.  Interaction of cellular and network mechanisms for efficient pheromone coding in moths , 2011, Proceedings of the National Academy of Sciences.

[91]  P. Mobbs The Brain of the Honeybee Apis Mellifera. I. The Connections and Spatial Organization of the Mushroom Bodies , 1982 .

[92]  Heike S. Demmer,et al.  Intrinsic membrane properties and inhibitory synaptic input of kenyon cells as mechanisms for sparse coding? , 2009, Journal of neurophysiology.

[93]  Gisbert Schneider,et al.  Processing and classification of chemical data inspired by insect olfaction , 2007, Proceedings of the National Academy of Sciences.

[94]  G. Laurent Dynamical representation of odors by oscillating and evolving neural assemblies , 1996, Trends in Neurosciences.

[95]  Gilles Laurent,et al.  Transformation of Olfactory Representations in the Drosophila Antennal Lobe , 2004, Science.

[96]  Brian H. Smith,et al.  Ensemble Response in Mushroom Body Output Neurons of the Honey Bee Outpaces Spatiotemporal Odor Processing Two Synapses Earlier in the Antennal Lobe , 2012, PloS one.

[97]  Gilles Laurent,et al.  Neural Encoding of Rapidly Fluctuating Odors , 2009, Neuron.

[98]  Andreas T. Schaefer,et al.  Two Distinct Channels of Olfactory Bulb Output , 2012, Neuron.

[99]  Maxim Bazhenov,et al.  Excitatory Local Interneurons Enhance Tuning of Sensory Information , 2012, PLoS Comput. Biol..

[100]  Matthew C Smear,et al.  Perception of sniff phase in mouse olfaction , 2011, Nature.

[101]  F. Amaldi,et al.  Nucleotide Composition of Soluble Ribonucleic Acid of Streptomyces fradiae , 1965, Nature.

[102]  F W Schürmann,et al.  [On the functional anatomy of the corpora pedunculata in insects (author's transl)]. , 1974, Experimental brain research.

[103]  Kei M. Igarashi,et al.  Parallel Mitral and Tufted Cell Pathways Route Distinct Odor Information to Different Targets in the Olfactory Cortex , 2012, The Journal of Neuroscience.

[104]  M. Bazhenov,et al.  Synaptic inhibition controls transient oscillatory synchronization in a model of the insect olfactory system , 2011, Front. Neuroeng..

[105]  Rachel I. Wilson,et al.  Origins of correlated activity in an olfactory circuit , 2009, Nature Neuroscience.

[106]  M. Giurfa,et al.  Perceptual and Neural Olfactory Similarity in Honeybees , 2005, PLoS biology.

[107]  R. Boch,et al.  2-Heptanone in the Mandibular Gland Secretion of the Honey-bee , 1965, Nature.

[108]  Richard Weniger,et al.  Neuronal Processing of Complex Mixtures Establishes a Unique Odor Representation in the Moth Antennal Lobe , 2011, Front. Neural Circuits.

[109]  M. Giurfa,et al.  Early olfactory experience modifies neural activity in the antennal lobe of a social insect at the adult stage , 2009, The European journal of neuroscience.

[110]  R. Menzel,et al.  Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. , 2005, Journal of neurophysiology.

[111]  Ad Aertsen,et al.  FIND - A unified framework for neural data analysis , 2008, Neural Networks.

[112]  R. Menzel,et al.  Three‐dimensional average‐shape atlas of the honeybee brain and its applications , 2005, The Journal of comparative neurology.

[113]  R. Menzel,et al.  Representations of odours and odour mixtures visualized in the honeybee brain , 1997, Nature.

[114]  J. Csicsvari,et al.  Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. , 2000, Journal of neurophysiology.

[115]  R. Boch,et al.  Identification of Iso-Amyl Acetate as an Active Component in the Sting Pheromone of the Honey Bee , 1962, Nature.

[116]  C. Koch,et al.  On the origin of the extracellular action potential waveform: A modeling study. , 2006, Journal of neurophysiology.

[117]  M. Stopfer,et al.  Encoding a temporally structured stimulus with a temporally structured neural representation , 2005, Nature Neuroscience.

[118]  G. Shepherd,et al.  Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. , 1997, Annual review of neuroscience.

[119]  Jeffrey A. Riffell,et al.  Neural correlates of behavior in the moth Manduca sexta in response to complex odors , 2009, Proceedings of the National Academy of Sciences.

[120]  Jeffrey A. Riffell,et al.  Contrast enhancement of stimulus intermittency in a primary olfactory network and its behavioral significance , 2009, Journal of biology.

[121]  B. Raman,et al.  Sparse odor representation and olfactory learning , 2008, Nature Neuroscience.

[122]  V. Rehder Quantification of the honeybee's proboscis reflex by electromyographic recordings , 1987 .

[123]  R. Menzel,et al.  Side-specific olfactory conditioning leads to more specific odor representation between sides but not within sides in the honeybee antennal lobes , 2003, Neuroscience.

[124]  Sebastian Kirschner,et al.  Dual olfactory pathway in the honeybee, Apis mellifera , 2006, The Journal of comparative neurology.

[125]  C Giovanni Galizia,et al.  Parallel olfactory systems in insects: anatomy and function. , 2010, Annual review of entomology.

[126]  R. Menzel,et al.  Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera , 2001, The Journal of comparative neurology.

[127]  R. Boch,et al.  Citral in the Nassanoff pheromone of the honey bee , 1966 .

[128]  J. Tautz,et al.  Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[129]  R. Menzel,et al.  Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. , 2002, Journal of Comparative Physiology A.

[130]  W. Rössler,et al.  Dual olfactory pathway in Hymenoptera: evolutionary insights from comparative studies. , 2011, Arthropod structure & development.

[131]  B. Nadler,et al.  Global Features of Neural Activity in the Olfactory System Form a Parallel Code That Predicts Olfactory Behavior and Perception , 2010, The Journal of Neuroscience.

[132]  Jeffrey A. Riffell,et al.  The neurobiology of insect olfaction: Sensory processing in a comparative context , 2011, Progress in Neurobiology.

[133]  Randolf Menzel,et al.  Rapid odor processing in the honeybee antennal lobe network , 2009 .

[134]  C. Galizia,et al.  Elemental and configural olfactory coding by antennal lobe neurons of the honeybee (Apis mellifera) , 2011, Journal of Comparative Physiology A.

[135]  R. Menzel,et al.  Associative and Non-Associative Plasticity in Kenyon Cells of the Honeybee Mushroom Body , 2008, Frontiers in systems neuroscience.

[136]  Randolf Menzel,et al.  Differential Odor Processing in Two Olfactory Pathways in the Honeybee , 2009, Front. Syst. Neurosci..

[137]  David Harel,et al.  Measuring smells , 2008, Current Opinion in Neurobiology.