Comprehensive geoneutrino analysis with Borexino
暂无分享,去创建一个
A. D. Ludovico | L. Papp | M. Misiaszek | M. Pallavicini | K. Zuber | M. Wurm | F. Ortica | J. Benziger | M. Gromov | A. Jany | F. Mantovani | G. Bellini | B. Caccianiga | F. Calaprice | D. D’Angelo | S. Davini | A. Derbin | C. Galbiati | C. Ghiano | M. Giammarchi | A. Goretti | A. Ianni | A. Ianni | V. Kobychev | G. Korga | M. Laubenstein | E. Litvinovich | P. Lombardi | L. Ludhova | I. Machulin | G. Manuzio | E. Meroni | L. Miramonti | V. Muratova | L. Oberauer | A. Pocar | G. Ranucci | A. Razeto | A. Re | B. Ricci | A. Romani | S. Schönert | M. Skorokhvatov | O. Smirnov | A. Sotnikov | Y. Suvorov | R. Tartaglia | G. Testera | R. Vogelaar | F. Feilitzsch | O. Zaimidoroga | S. Zavatarelli | G. Zuzel | L. Noto | K. Zuber | F. von Feilitzsch | C. Hagner | T. Lachenmaier | T. Lasserre | J. Maricic | A. Onillon | D. Semenov | F. Cavanna | G. Fiorentini | M. Vivier | D. Bick | G. Bonfini | D. Bravo | A. Chepurnov | N. Rossi | D. Basilico | S. Appel | A. Caminata | S. Marcocci | A. Formozov | M. Montuschi | V. Strati | Ö. Penek | Z. Bagdasarian | D. Guffanti | E. Hungerford | F. Gabriele | A. Ianni | E. Unzhakov | A. Vishneva | A. D. Giacinto | V. D. Marcello | X. Ding | I. Drachnev | S. Kumaran | I. Lomskaya | G. Lukyanchenko | V. Orekhov | L. Pietrofaccia | N. Pilipenko | G. Raikov | M. Ranalli | M. Redchuk | M. Wurm | M. Agostini | K. Altenmüller | V. Atroshchenko | A. Di Giacinto | V. Di Marcello | A. Di Ludovico | L. Di noto | D. Jeschke | L. Lukyanchenko | J. Martyn | M. Meyer | B. Neumair | M. Nieslony | A. Romani | J. Thurn | M. Gschwender | K. Choi | S. Rottenanger | D. Franco | M. Wójcik | R. Vogelaar | L. Cappelli | P. Cavalcante | M. Meyer | M. Meyer
[1] M. Canepa,et al. The Monte Carlo simulation of the Borexino detector , 2017, Journal of Physics: Conference Series.
[2] K. Zuber,et al. Neutrino–nuclear responses for astro-neutrinos, single beta decays and double beta decays , 2019, Physics Reports.
[3] A. D. Ludovico,et al. Modulations of the cosmic muon signal in ten years of Borexino data , 2018, Journal of Cosmology and Astroparticle Physics.
[4] W. Hager,et al. and s , 2019, Shallow Water Hydraulics.
[5] P. Mohr. Revised cross section of the C13(α, n)O16 reaction between 5 and 8 MeV , 2018, Physical Review C.
[6] S. Palomares-Ruiz,et al. Neutrino tomography of Earth , 2018, Nature Physics.
[7] I. Stancu,et al. Yields and production rates of cosmogenic 9Li and 8He measured with the Double Chooz near and far detectors , 2018, Journal of High Energy Physics.
[8] W. McDonough,et al. Earth's chondritic Th/U: Negligible fractionation during accretion, core formation, and crust–mantle differentiation , 2018, Earth and Planetary Science Letters.
[9] S. Westerdale. A new tool for (α,n) yield calculations and its implications for DEAP-3600 , 2018 .
[10] Charles H. Lineweaver,et al. The Elemental Abundances (with Uncertainties) of the Most Earth-like Planet , 2017, 1708.08718.
[11] M. Lindner. Double Chooz , 2018 .
[12] The Borexino Collaboration. Comprehensive measurement of pp-chain solar neutrinos , 2018 .
[13] J. Kelley,et al. Energy levels of light nuclei A = 12 , 2017 .
[14] W. McDonough,et al. Perceiving the Crust in 3‐D: A Model Integrating Geological, Geochemical, and Geophysical Data , 2017, 1712.04676.
[15] S. Borensztajn,et al. The solubility of heat-producing elements in Earth’s core , 2017 .
[16] Stan B. Thomas,et al. The Fluorescence detector Array of Single-pixel Telescopes: Contributions to the 35th International Cosmic Ray Conference (ICRC 2017) , 2017, 1708.01379.
[17] T. Materna,et al. Reactor antineutrino shoulder explained by energy scale nonlinearities , 2017, 1705.09434.
[18] B. Wood,et al. Uranium, thorium and REE partitioning into sulfide liquids: Implications for reduced S-rich bodies , 2017 .
[19] G F Cao,et al. Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay. , 2017, Physical review letters.
[20] anonymous,et al. Erratum: Measurement of the reactor antineutrino flux and spectrum at Daya Bay [Phys. Rev. Lett. 116, 061801 (2016)]. , 2017, Physical review letters.
[21] K. Righter,et al. Metal–silicate partitioning of U: Implications for the heat budget of the core and evidence for reduced U in the mantle , 2017 .
[22] J. Coelho,et al. Neutrino oscillation tomography of the Earth with KM3NeT-ORCA , 2017, 1702.03723.
[23] P. Meyers,et al. Radiogenic neutron yield calculations for low-background experiments , 2017, 1702.02465.
[24] M. Misiaszek,et al. Seasonal Modulation of the $^7$Be Solar Neutrino Rate in Borexino , 2017, 1701.07970.
[25] zhe wang,et al. Geoneutrinos at Jinping: flux prediction and oscillation analysis , 2016, 1612.00133.
[26] S. Basu,et al. A New Generation of Standard Solar Models , 2016, 1611.09867.
[27] A. Bouvier,et al. Primitive Solar System materials and Earth share a common initial 142Nd abundance , 2016, Nature.
[28] A. J. Kaufman,et al. Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites , 2016 .
[29] W. Winter. Atmospheric Neutrino Oscillations for Earth Tomography , 2015, 1511.05154.
[30] G F Cao,et al. Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay , 2014, Physical review letters.
[31] D. Swanson. FROM TABEAU TO SDOU: A BRIEF HISTORY OF ORNITHOLOGY IN SOUTH DAKOTA WITH SPECIAL REFERENCE TO WORKS PUBLISHED IN THE PROCEEDINGS OF THE SOUTH DAKOTA ACADEMY OF SCIENCE , 2016 .
[32] S. Westerdale. A study of nuclear recoil backgrounds in dark matter detectors , 2016 .
[33] Zheng Wang,et al. Neutrino Physics with JUNO , 2015, 1507.05613.
[34] M. Misiaszek,et al. Spectroscopy of geoneutrinos from 2056 days of Borexino data , 2015, 1506.04610.
[35] Mirko Reguzzoni,et al. EMMA : An Earth crustal model based on GOCE satellite data , 2014 .
[36] K. Kasahara,et al. Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model , 2015, 1502.03916.
[37] F. Mantovani,et al. Reference worldwide model for antineutrinos from reactors , 2014, 1411.6475.
[38] C. Jaupart,et al. Heat Flow and Thermal Structure of the Lithosphere , 2015 .
[39] L. Cadonati,et al. Neutrinos from the primary proton–proton fusion process in the Sun , 2014, Nature.
[40] J. I. Crespo-Anadón,et al. Improved measurements of the neutrino mixing angle θ13 with the Double Chooz detector , 2014, 1406.7763.
[41] W. McDonough,et al. Regional study of the Archean to Proterozoic crust at the Sudbury Neutrino Observatory (SNO+), Ontario: Predicting the geoneutrino flux , 2014, 1404.6692.
[42] E. Lisi,et al. Neutrino mass hierarchy and electron neutrino oscillation parameters with one hundred thousand reactor events , 2013, 1309.1638.
[43] M. Laubenstein,et al. Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy , 2013, 1308.0443.
[44] S. Jain,et al. Earth as a Planet , 2014 .
[45] T. Plank. 4.17 – The Chemical Composition of Subducting Sediments , 2014 .
[46] Karl K. Turekian,et al. Treatise on geochemistry , 2014 .
[47] H. Palme,et al. Cosmochemical Estimates of Mantle Composition , 2014 .
[48] K. Cranmer,et al. Erratum to: Asymptotic formulae for likelihood-based tests of new physics , 2013 .
[49] J. Cao,et al. Improved calculation of the energy release in neutron-induced fission , 2012, 1212.6625.
[50] L. Cadonati,et al. Cosmogenic Backgrounds in Borexino at 3800 m water-equivalent depth , 2013, 1304.7381.
[51] Y. Oki,et al. Reactor On-Off Antineutrino Measurement with KamLAND , 2013 .
[52] L. Cadonati,et al. Measurement of geo-neutrinos from 1353 days of Borexino , 2013, 1303.2571.
[53] W. McDonough,et al. A reference Earth model for the heat‐producing elements and associated geoneutrino flux , 2013, 1301.0365.
[54] W. McDonough,et al. Geophysical and geochemical constraints on geoneutrino fluxes from Earth's mantle , 2012, 1207.0853.
[55] V. A. Tarasov,et al. KamLAND-Experiment and Soliton-Like Nuclear Georeactor. Part 1. Comparison of Theory with Experiment , 2010, 1011.3568.
[56] W. McDonough,et al. Geo-neutrinos , 2013, 1310.3732.
[57] L. Cadonati,et al. Lifetime measurements of 214Po and 212Po with the CTF liquid scintillator detector at LNGS , 2012, 1212.1332.
[58] Arjan J. Koning,et al. Modern Nuclear Data Evaluation with the TALYS Code System , 2012 .
[59] L. Cadonati,et al. Borexino calibrations: hardware, methods, and results , 2012, 1207.4816.
[60] W. Marsden. I and J , 2012 .
[61] S. Dye. Geoneutrinos and the radioactive power of the Earth , 2011, 1111.6099.
[62] O. Perevozchikov,et al. Partial radiogenic heat model for Earth revealed by geoneutrino measurements , 2011 .
[63] F. Mantovani,et al. U and Th content in the Central Apennines continental crust: A contribution to the determination of the geo-neutrinos flux at LNGS , 2011, 1102.1335.
[64] L. Cadonati,et al. Muon and cosmogenic neutron detection in Borexino , 2011, 1101.3101.
[65] S. Cormon,et al. Improved Predictions of Reactor Antineutrino Spectra , 2011, 1101.2663.
[66] F. Nimmo,et al. Heterogeneous accretion, composition and core–mantle differentiation of the Earth , 2011 .
[67] Lapo Boschi,et al. GyPSuM: A joint tomographic model of mantle density and seismic wave speeds , 2010 .
[68] F. Albarède,et al. The Solar System primordial lead , 2010 .
[69] K. Cranmer,et al. Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.
[70] A. Jambon,et al. The chemical composition of the Earth: Enstatite chondrite models , 2010 .
[71] Michael Wurm,et al. Observation of geo-neutrinos , 2010 .
[72] M. Lissia,et al. Nuclear physics for geo-neutrino studies , 2009, 0908.3433.
[73] R. Hatcher,et al. The GENIE * Neutrino Monte Carlo Generator , 2009, 0905.2517.
[74] D. Davies,et al. Earth's surface heat flux , 2009 .
[75] S. Dye. Neutrino mixing discriminates geo-reactor models , 2009, 0905.0523.
[76] W. McDonough,et al. The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution , 2009 .
[77] et al,et al. The Borexino detector at the Laboratori Nazionali del Gran Sasso , 2008, 0806.2400.
[78] J. Korenaga. Urey ratio and the structure and evolution of Earth's mantle , 2008 .
[79] M. Decowski,et al. Precision measurement of neutrino oscillation parameters with KamLAND. , 2007, Physical review letters.
[80] S. Bonetti,et al. Pulse-shape discrimination with the Counting Test Facility , 2008 .
[81] J. Busenitz,et al. A C-13(alpha,n)O-16 calibration source for KamLAND , 2007, 0711.3624.
[82] M. Lissia,et al. Geo-neutrinos and earth's interior , 2007, 0707.3203.
[83] Don L. Anderson,et al. New Theory of the Earth: Elasticity and solid-state geophysics , 2007 .
[84] J. Korenaga,et al. Chemical composition of Earth's primitive mantle and its variance: 2. Implications for global geodynamics , 2007 .
[85] M. Misiaszek,et al. The Borexino Collaboration , 2007 .
[86] D. L. Anderson. New Theory of the Earth: Abbreviations and acronyms , 2007 .
[87] G. Schubert,et al. Treatise on geophysics , 2007 .
[88] M. Chen. Geo-neutrinos in SNO+ , 2007 .
[89] D. McKenzie,et al. The relationship between depth, age and gravity in the oceans , 2006 .
[90] V. N. Pavlovich,et al. Geoantineutrino spectrum, He-3 / He-4: Ratio radial distribution and slow nuclear burning on the boundary of the liquid and solid phases of the Earth's core , 2006, nucl-th/0605025.
[91] M. Decowski,et al. Experimental investigation of geologically produced antineutrinos with KamLAND , 2005, Nature.
[92] K. Riisager,et al. Low-lying resonance states in the 9Be continuum , 2005 .
[93] T. Montaruli,et al. The atmospheric neutrino flux below 100-MeV: The FLUKA results , 2005 .
[94] A. Hofmeister,et al. Earth's heat flux revised and linked to chemistry , 2005 .
[95] I. Finetti,et al. CROP PROJECT : Deep Seismic Exploration of the Central Mediterranean and Italy , 2005 .
[96] L. Wen,et al. Mapping the geometry and geographic distribution of a very low velocity province at the base of the Earth's mantle , 2004 .
[97] A. Hime,et al. Muon-induced background study for underground laboratories , 2005, astro-ph/0512125.
[98] M. Lissia,et al. Antineutrinos from Earth: A reference model and its uncertainties , 2003, hep-ph/0309013.
[99] W. McDonough,et al. Compositional Model for the Earth's Core , 2003 .
[100] F. Vissani,et al. Precise quasielastic neutrino/nucleon cross-section , 2003, astro-ph/0302055.
[101] M. Ritzwoller,et al. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle , 2002 .
[102] J. Woodhouse,et al. Seismic Observations of Splitting of the Mid-Transition Zone Discontinuity in Earth's Mantle , 2001, Science.
[103] K. Farley,et al. NOBLE GASES IN THE EARTH'S MANTLE , 1998 .
[104] N. Darnton,et al. A large-scale low-background liquid scintillation detector: the counting test facility at Gran Sasso , 1998 .
[105] F. Suekane,et al. Measuring the Global Radioactivity in the Earth by Multidetector Antineutrino Spectroscopy , 1998 .
[106] F. Calaprice,et al. Antineutrino geophysics with liquid scintillator detectors , 1997, nucl-ex/9710001.
[107] J. Dankovicová. Czech , 1997, Journal of the International Phonetic Association.
[108] Hayes,et al. Review of Particle Physics. , 1996, Physical review. D, Particles and fields.
[109] J. Herndon. Substructure of the inner core of the Earth. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[110] J. Herskowitz,et al. Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.
[111] Yoav Freund,et al. A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.
[112] W. McDonough,et al. The composition of the Earth , 1995 .
[113] Suzanne Hurter,et al. Heat flow from the Earth's interior: Analysis of the global data set , 1993 .
[114] J. Herndon. Feasibility of a Nuclear Fission Reactor at the Center of the Earth as the Energy Source for the Geomagnetic Field. , 1993 .
[115] Elazar Uchupi,et al. Annual Review of Earth and Planetary Sciences: Volume 19 (1991), 484p. US $60.00 and Volume 20 (1992), 631 p. US $64.00 , 1993 .
[116] Neal E. Blair. Geochimica et Cosmochimica Acta , 1992 .
[117] C. M. Budwine,et al. Institute of geophysics and planetary physics , 1991 .
[118] A. Faessler,et al. Progress in Particle and Nuclear Physics , 1991 .
[119] S. Glashow,et al. Antineutrino astronomy and geophysics , 1984, Nature.
[120] D. L. Anderson,et al. Preliminary reference earth model , 1981 .
[121] G. Davies. Review of oceanic and global heat flow estimates , 1980 .
[122] C. Jaupart,et al. The heat flow through oceanic and continental crust and the heat loss of the Earth , 1980 .
[123] K. Goettel. Models for the origin and composition of the earth, and the hypothesis of potassium in the Earth's core , 1976 .
[124] David L. Williams,et al. Heat Loss from the Earth: New Estimate , 1974 .
[125] C. Lomnitz. Geodynamics. , 1973, Science.
[126] G. Marx. Geophysics by neutrinos , 1969 .
[127] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[128] 戸高 法文,et al. Geochemistry , 2019, Nature.
[129] R. Adams. Proceedings , 1947, Quarterly Journal of the Geological Society of London.