Comprehensive geoneutrino analysis with Borexino

This paper presents a comprehensive geoneutrino measurement using the Borexino detector, located at Laboratori Nazionali del Gran Sasso (LNGS) in Italy. The analysis is the result of 3262.74 days of data between December 2007 and April 2019. The paper describes improved analysis techniques and optimized data selection, which includes enlarged fiducial volume and sophisticated cosmogenic veto. The reported exposure of (1.29±0.05)×1032 protons ×year represents an increase by a factor of two over a previous Borexino analysis reported in 2015. By observing 52.6-8.6+9.4(stat)-2.1+2.7(sys) geoneutrinos (68% interval) from U238 and Th232, a geoneutrino signal of 47.0-7.7+8.4(stat)-1.9+2.4(sys) TNU with  -17.2+18.3% total precision was obtained. This result assumes the same Th/U mass ratio as found in chondritic CI meteorites but compatible results were found when contributions from U238 and Th232 were both fit as free parameters. Antineutrino background from reactors is fit unconstrained and found compatible with the expectations. The null-hypothesis of observing a geoneutrino signal from the mantle is excluded at a 99.0% C.L. when exploiting detailed knowledge of the local crust near the experimental site. Measured mantle signal of 21.2-9.0+9.5(stat)-0.9+1.1(sys) TNU corresponds to the production of a radiogenic heat of 24.6-10.4+11.1  TW (68% interval) from U238 and Th232 in the mantle. Assuming 18% contribution of K40 in the mantle and 8.1-1.4+1.9  TW of total radiogenic heat of the lithosphere, the Borexino estimate of the total radiogenic heat of the Earth is 38.2-12.7+13.6  TW, which corresponds to the convective Urey ratio of 0.78-0.28+0.41. These values are compatible with different geological predictions, however there is a ∼2.4σ tension with those Earth models which predict the lowest concentration of heat-producing elements in the mantle. In addition, by constraining the number of expected reactor antineutrino events, the existence of a hypothetical georeactor at the center of the Earth having power greater than 2.4 TW is excluded at 95% C.L. Particular attention is given to the description of all analysis details which should be of interest for the next generation of geoneutrino measurements using liquid scintillator detectors.

A. D. Ludovico | L. Papp | M. Misiaszek | M. Pallavicini | K. Zuber | M. Wurm | F. Ortica | J. Benziger | M. Gromov | A. Jany | F. Mantovani | G. Bellini | B. Caccianiga | F. Calaprice | D. D’Angelo | S. Davini | A. Derbin | C. Galbiati | C. Ghiano | M. Giammarchi | A. Goretti | A. Ianni | A. Ianni | V. Kobychev | G. Korga | M. Laubenstein | E. Litvinovich | P. Lombardi | L. Ludhova | I. Machulin | G. Manuzio | E. Meroni | L. Miramonti | V. Muratova | L. Oberauer | A. Pocar | G. Ranucci | A. Razeto | A. Re | B. Ricci | A. Romani | S. Schönert | M. Skorokhvatov | O. Smirnov | A. Sotnikov | Y. Suvorov | R. Tartaglia | G. Testera | R. Vogelaar | F. Feilitzsch | O. Zaimidoroga | S. Zavatarelli | G. Zuzel | L. Noto | K. Zuber | F. von Feilitzsch | C. Hagner | T. Lachenmaier | T. Lasserre | J. Maricic | A. Onillon | D. Semenov | F. Cavanna | G. Fiorentini | M. Vivier | D. Bick | G. Bonfini | D. Bravo | A. Chepurnov | N. Rossi | D. Basilico | S. Appel | A. Caminata | S. Marcocci | A. Formozov | M. Montuschi | V. Strati | Ö. Penek | Z. Bagdasarian | D. Guffanti | E. Hungerford | F. Gabriele | A. Ianni | E. Unzhakov | A. Vishneva | A. D. Giacinto | V. D. Marcello | X. Ding | I. Drachnev | S. Kumaran | I. Lomskaya | G. Lukyanchenko | V. Orekhov | L. Pietrofaccia | N. Pilipenko | G. Raikov | M. Ranalli | M. Redchuk | M. Wurm | M. Agostini | K. Altenmüller | V. Atroshchenko | A. Di Giacinto | V. Di Marcello | A. Di Ludovico | L. Di noto | D. Jeschke | L. Lukyanchenko | J. Martyn | M. Meyer | B. Neumair | M. Nieslony | A. Romani | J. Thurn | M. Gschwender | K. Choi | S. Rottenanger | D. Franco | M. Wójcik | R. Vogelaar | L. Cappelli | P. Cavalcante | M. Meyer | M. Meyer

[1]  M. Canepa,et al.  The Monte Carlo simulation of the Borexino detector , 2017, Journal of Physics: Conference Series.

[2]  K. Zuber,et al.  Neutrino–nuclear responses for astro-neutrinos, single beta decays and double beta decays , 2019, Physics Reports.

[3]  A. D. Ludovico,et al.  Modulations of the cosmic muon signal in ten years of Borexino data , 2018, Journal of Cosmology and Astroparticle Physics.

[4]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[5]  P. Mohr Revised cross section of the C13(α, n)O16 reaction between 5 and 8 MeV , 2018, Physical Review C.

[6]  S. Palomares-Ruiz,et al.  Neutrino tomography of Earth , 2018, Nature Physics.

[7]  I. Stancu,et al.  Yields and production rates of cosmogenic 9Li and 8He measured with the Double Chooz near and far detectors , 2018, Journal of High Energy Physics.

[8]  W. McDonough,et al.  Earth's chondritic Th/U: Negligible fractionation during accretion, core formation, and crust–mantle differentiation , 2018, Earth and Planetary Science Letters.

[9]  S. Westerdale A new tool for (α,n) yield calculations and its implications for DEAP-3600 , 2018 .

[10]  Charles H. Lineweaver,et al.  The Elemental Abundances (with Uncertainties) of the Most Earth-like Planet , 2017, 1708.08718.

[11]  M. Lindner Double Chooz , 2018 .

[12]  The Borexino Collaboration Comprehensive measurement of pp-chain solar neutrinos , 2018 .

[13]  J. Kelley,et al.  Energy levels of light nuclei A = 12 , 2017 .

[14]  W. McDonough,et al.  Perceiving the Crust in 3‐D: A Model Integrating Geological, Geochemical, and Geophysical Data , 2017, 1712.04676.

[15]  S. Borensztajn,et al.  The solubility of heat-producing elements in Earth’s core , 2017 .

[16]  Stan B. Thomas,et al.  The Fluorescence detector Array of Single-pixel Telescopes: Contributions to the 35th International Cosmic Ray Conference (ICRC 2017) , 2017, 1708.01379.

[17]  T. Materna,et al.  Reactor antineutrino shoulder explained by energy scale nonlinearities , 2017, 1705.09434.

[18]  B. Wood,et al.  Uranium, thorium and REE partitioning into sulfide liquids: Implications for reduced S-rich bodies , 2017 .

[19]  G F Cao,et al.  Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay. , 2017, Physical review letters.

[20]  anonymous,et al.  Erratum: Measurement of the reactor antineutrino flux and spectrum at Daya Bay [Phys. Rev. Lett. 116, 061801 (2016)]. , 2017, Physical review letters.

[21]  K. Righter,et al.  Metal–silicate partitioning of U: Implications for the heat budget of the core and evidence for reduced U in the mantle , 2017 .

[22]  J. Coelho,et al.  Neutrino oscillation tomography of the Earth with KM3NeT-ORCA , 2017, 1702.03723.

[23]  P. Meyers,et al.  Radiogenic neutron yield calculations for low-background experiments , 2017, 1702.02465.

[24]  M. Misiaszek,et al.  Seasonal Modulation of the $^7$Be Solar Neutrino Rate in Borexino , 2017, 1701.07970.

[25]  zhe wang,et al.  Geoneutrinos at Jinping: flux prediction and oscillation analysis , 2016, 1612.00133.

[26]  S. Basu,et al.  A New Generation of Standard Solar Models , 2016, 1611.09867.

[27]  A. Bouvier,et al.  Primitive Solar System materials and Earth share a common initial 142Nd abundance , 2016, Nature.

[28]  A. J. Kaufman,et al.  Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites , 2016 .

[29]  W. Winter Atmospheric Neutrino Oscillations for Earth Tomography , 2015, 1511.05154.

[30]  G F Cao,et al.  Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay , 2014, Physical review letters.

[31]  D. Swanson FROM TABEAU TO SDOU: A BRIEF HISTORY OF ORNITHOLOGY IN SOUTH DAKOTA WITH SPECIAL REFERENCE TO WORKS PUBLISHED IN THE PROCEEDINGS OF THE SOUTH DAKOTA ACADEMY OF SCIENCE , 2016 .

[32]  S. Westerdale A study of nuclear recoil backgrounds in dark matter detectors , 2016 .

[33]  Zheng Wang,et al.  Neutrino Physics with JUNO , 2015, 1507.05613.

[34]  M. Misiaszek,et al.  Spectroscopy of geoneutrinos from 2056 days of Borexino data , 2015, 1506.04610.

[35]  Mirko Reguzzoni,et al.  EMMA : An Earth crustal model based on GOCE satellite data , 2014 .

[36]  K. Kasahara,et al.  Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model , 2015, 1502.03916.

[37]  F. Mantovani,et al.  Reference worldwide model for antineutrinos from reactors , 2014, 1411.6475.

[38]  C. Jaupart,et al.  Heat Flow and Thermal Structure of the Lithosphere , 2015 .

[39]  L. Cadonati,et al.  Neutrinos from the primary proton–proton fusion process in the Sun , 2014, Nature.

[40]  J. I. Crespo-Anadón,et al.  Improved measurements of the neutrino mixing angle θ13 with the Double Chooz detector , 2014, 1406.7763.

[41]  W. McDonough,et al.  Regional study of the Archean to Proterozoic crust at the Sudbury Neutrino Observatory (SNO+), Ontario: Predicting the geoneutrino flux , 2014, 1404.6692.

[42]  E. Lisi,et al.  Neutrino mass hierarchy and electron neutrino oscillation parameters with one hundred thousand reactor events , 2013, 1309.1638.

[43]  M. Laubenstein,et al.  Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy , 2013, 1308.0443.

[44]  S. Jain,et al.  Earth as a Planet , 2014 .

[45]  T. Plank 4.17 – The Chemical Composition of Subducting Sediments , 2014 .

[46]  Karl K. Turekian,et al.  Treatise on geochemistry , 2014 .

[47]  H. Palme,et al.  Cosmochemical Estimates of Mantle Composition , 2014 .

[48]  K. Cranmer,et al.  Erratum to: Asymptotic formulae for likelihood-based tests of new physics , 2013 .

[49]  J. Cao,et al.  Improved calculation of the energy release in neutron-induced fission , 2012, 1212.6625.

[50]  L. Cadonati,et al.  Cosmogenic Backgrounds in Borexino at 3800 m water-equivalent depth , 2013, 1304.7381.

[51]  Y. Oki,et al.  Reactor On-Off Antineutrino Measurement with KamLAND , 2013 .

[52]  L. Cadonati,et al.  Measurement of geo-neutrinos from 1353 days of Borexino , 2013, 1303.2571.

[53]  W. McDonough,et al.  A reference Earth model for the heat‐producing elements and associated geoneutrino flux , 2013, 1301.0365.

[54]  W. McDonough,et al.  Geophysical and geochemical constraints on geoneutrino fluxes from Earth's mantle , 2012, 1207.0853.

[55]  V. A. Tarasov,et al.  KamLAND-Experiment and Soliton-Like Nuclear Georeactor. Part 1. Comparison of Theory with Experiment , 2010, 1011.3568.

[56]  W. McDonough,et al.  Geo-neutrinos , 2013, 1310.3732.

[57]  L. Cadonati,et al.  Lifetime measurements of 214Po and 212Po with the CTF liquid scintillator detector at LNGS , 2012, 1212.1332.

[58]  Arjan J. Koning,et al.  Modern Nuclear Data Evaluation with the TALYS Code System , 2012 .

[59]  L. Cadonati,et al.  Borexino calibrations: hardware, methods, and results , 2012, 1207.4816.

[60]  W. Marsden I and J , 2012 .

[61]  S. Dye Geoneutrinos and the radioactive power of the Earth , 2011, 1111.6099.

[62]  O. Perevozchikov,et al.  Partial radiogenic heat model for Earth revealed by geoneutrino measurements , 2011 .

[63]  F. Mantovani,et al.  U and Th content in the Central Apennines continental crust: A contribution to the determination of the geo-neutrinos flux at LNGS , 2011, 1102.1335.

[64]  L. Cadonati,et al.  Muon and cosmogenic neutron detection in Borexino , 2011, 1101.3101.

[65]  S. Cormon,et al.  Improved Predictions of Reactor Antineutrino Spectra , 2011, 1101.2663.

[66]  F. Nimmo,et al.  Heterogeneous accretion, composition and core–mantle differentiation of the Earth , 2011 .

[67]  Lapo Boschi,et al.  GyPSuM: A joint tomographic model of mantle density and seismic wave speeds , 2010 .

[68]  F. Albarède,et al.  The Solar System primordial lead , 2010 .

[69]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[70]  A. Jambon,et al.  The chemical composition of the Earth: Enstatite chondrite models , 2010 .

[71]  Michael Wurm,et al.  Observation of geo-neutrinos , 2010 .

[72]  M. Lissia,et al.  Nuclear physics for geo-neutrino studies , 2009, 0908.3433.

[73]  R. Hatcher,et al.  The GENIE * Neutrino Monte Carlo Generator , 2009, 0905.2517.

[74]  D. Davies,et al.  Earth's surface heat flux , 2009 .

[75]  S. Dye Neutrino mixing discriminates geo-reactor models , 2009, 0905.0523.

[76]  W. McDonough,et al.  The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution , 2009 .

[77]  et al,et al.  The Borexino detector at the Laboratori Nazionali del Gran Sasso , 2008, 0806.2400.

[78]  J. Korenaga Urey ratio and the structure and evolution of Earth's mantle , 2008 .

[79]  M. Decowski,et al.  Precision measurement of neutrino oscillation parameters with KamLAND. , 2007, Physical review letters.

[80]  S. Bonetti,et al.  Pulse-shape discrimination with the Counting Test Facility , 2008 .

[81]  J. Busenitz,et al.  A C-13(alpha,n)O-16 calibration source for KamLAND , 2007, 0711.3624.

[82]  M. Lissia,et al.  Geo-neutrinos and earth's interior , 2007, 0707.3203.

[83]  Don L. Anderson,et al.  New Theory of the Earth: Elasticity and solid-state geophysics , 2007 .

[84]  J. Korenaga,et al.  Chemical composition of Earth's primitive mantle and its variance: 2. Implications for global geodynamics , 2007 .

[85]  M. Misiaszek,et al.  The Borexino Collaboration , 2007 .

[86]  D. L. Anderson New Theory of the Earth: Abbreviations and acronyms , 2007 .

[87]  G. Schubert,et al.  Treatise on geophysics , 2007 .

[88]  M. Chen Geo-neutrinos in SNO+ , 2007 .

[89]  D. McKenzie,et al.  The relationship between depth, age and gravity in the oceans , 2006 .

[90]  V. N. Pavlovich,et al.  Geoantineutrino spectrum, He-3 / He-4: Ratio radial distribution and slow nuclear burning on the boundary of the liquid and solid phases of the Earth's core , 2006, nucl-th/0605025.

[91]  M. Decowski,et al.  Experimental investigation of geologically produced antineutrinos with KamLAND , 2005, Nature.

[92]  K. Riisager,et al.  Low-lying resonance states in the 9Be continuum , 2005 .

[93]  T. Montaruli,et al.  The atmospheric neutrino flux below 100-MeV: The FLUKA results , 2005 .

[94]  A. Hofmeister,et al.  Earth's heat flux revised and linked to chemistry , 2005 .

[95]  I. Finetti,et al.  CROP PROJECT : Deep Seismic Exploration of the Central Mediterranean and Italy , 2005 .

[96]  L. Wen,et al.  Mapping the geometry and geographic distribution of a very low velocity province at the base of the Earth's mantle , 2004 .

[97]  A. Hime,et al.  Muon-induced background study for underground laboratories , 2005, astro-ph/0512125.

[98]  M. Lissia,et al.  Antineutrinos from Earth: A reference model and its uncertainties , 2003, hep-ph/0309013.

[99]  W. McDonough,et al.  Compositional Model for the Earth's Core , 2003 .

[100]  F. Vissani,et al.  Precise quasielastic neutrino/nucleon cross-section , 2003, astro-ph/0302055.

[101]  M. Ritzwoller,et al.  Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle , 2002 .

[102]  J. Woodhouse,et al.  Seismic Observations of Splitting of the Mid-Transition Zone Discontinuity in Earth's Mantle , 2001, Science.

[103]  K. Farley,et al.  NOBLE GASES IN THE EARTH'S MANTLE , 1998 .

[104]  N. Darnton,et al.  A large-scale low-background liquid scintillation detector: the counting test facility at Gran Sasso , 1998 .

[105]  F. Suekane,et al.  Measuring the Global Radioactivity in the Earth by Multidetector Antineutrino Spectroscopy , 1998 .

[106]  F. Calaprice,et al.  Antineutrino geophysics with liquid scintillator detectors , 1997, nucl-ex/9710001.

[107]  J. Dankovicová Czech , 1997, Journal of the International Phonetic Association.

[108]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[109]  J. Herndon Substructure of the inner core of the Earth. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[110]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[111]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[112]  W. McDonough,et al.  The composition of the Earth , 1995 .

[113]  Suzanne Hurter,et al.  Heat flow from the Earth's interior: Analysis of the global data set , 1993 .

[114]  J. Herndon Feasibility of a Nuclear Fission Reactor at the Center of the Earth as the Energy Source for the Geomagnetic Field. , 1993 .

[115]  Elazar Uchupi,et al.  Annual Review of Earth and Planetary Sciences: Volume 19 (1991), 484p. US $60.00 and Volume 20 (1992), 631 p. US $64.00 , 1993 .

[116]  Neal E. Blair Geochimica et Cosmochimica Acta , 1992 .

[117]  C. M. Budwine,et al.  Institute of geophysics and planetary physics , 1991 .

[118]  A. Faessler,et al.  Progress in Particle and Nuclear Physics , 1991 .

[119]  S. Glashow,et al.  Antineutrino astronomy and geophysics , 1984, Nature.

[120]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[121]  G. Davies Review of oceanic and global heat flow estimates , 1980 .

[122]  C. Jaupart,et al.  The heat flow through oceanic and continental crust and the heat loss of the Earth , 1980 .

[123]  K. Goettel Models for the origin and composition of the earth, and the hypothesis of potassium in the Earth's core , 1976 .

[124]  David L. Williams,et al.  Heat Loss from the Earth: New Estimate , 1974 .

[125]  C. Lomnitz Geodynamics. , 1973, Science.

[126]  G. Marx Geophysics by neutrinos , 1969 .

[127]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[128]  戸高 法文,et al.  Geochemistry , 2019, Nature.

[129]  R. Adams Proceedings , 1947, Quarterly Journal of the Geological Society of London.