Botryococcus braunii versus Gloecapsomorpha prisca: Chemical composition correlation using laser micropyrolysis-gas chromatography/mass spectrometer (LmPy-GCMSMS)

[1]  J. Volkman Acyclic isoprenoid biomarkers and evolution of biosynthetic pathways in green microalgae of the genus Botryococcus , 2014 .

[2]  Stefan Schouten,et al.  C27–C30 neohop-13(18)-enes and their saturated and aromatic derivatives in sediments: Indicators for diagenesis and water column stratification , 2014 .

[3]  R. Littke,et al.  The effect of different pyrolysis temperatures on organic microfossils, vitrain and amber—A comparative study between laser assisted- and Curie Point-pyrolysis–gas chromatography/mass spectrometry , 2014 .

[4]  R. Littke,et al.  Alteration of organic material during maturation: A pyrolytic and infrared spectroscopic study of isolated bisaccate pollen and total organic matter (Lower Jurassic, Hils Syncline, Germany) , 2013 .

[5]  Mikihide Demura,et al.  Relationship between hydrocarbons and molecular phylogeny of Botryococcus braunii , 2012 .

[6]  P. Greenwood Lasers used in analytical micropyrolysis , 2011 .

[7]  F. A. D. Silva,et al.  Organic facies of the Oligocene lacustrine system in the Cenozoic Taubaté basin, Southern Brazil , 2010 .

[8]  C. Pan,et al.  Kerogen pyrolysis in the presence and absence of water and minerals: Steranes and triterpenoids , 2010 .

[9]  M. Baron,et al.  Recent trends and developments in pyrolysis-gas chromatography. , 2008, Journal of chromatography. A.

[10]  S. George,et al.  New insights into the chemical composition of chitinozoans , 2007 .

[11]  C. Largeau,et al.  Botryococcus braunii: a rich source for hydrocarbons and related ether lipids , 2005, Applied Microbiology and Biotechnology.

[12]  H. Yoshioka,et al.  Analysis of organic compounds in coal macerals by infrared laser micropyrolysis , 2004 .

[13]  S. Morgan,et al.  UV laser pyrolysis fast gas chromatography/time-of-flight mass spectrometry for rapid characterization of synthetic polymers: instrument development , 2004 .

[14]  S. Morgan,et al.  UV laser pyrolysis fast gas chromatography/time-of-flight mass spectrometry for rapid characterization of synthetic polymers: optimization of instrumental parameters , 2004 .

[15]  Ü. Lille CURRENT KNOWLEDGE ON THE ORIGIN AND STRUCTURE OF ESTONIAN KUKERSITE KEROGEN , 2003, Oil Shale.

[16]  P. Hatcher,et al.  Laser micropyrolysis GC–MS of lignin , 2002 .

[17]  R. Pancost,et al.  The chemical structure of Gloeocapsomorpha prisca microfossils: implications for their origin , 2001 .

[18]  Khaled R. Arouri,et al.  Tricyclic terpenoid composition of Tasmanites kerogen as determined by pyrolysis GC-MS , 2000 .

[19]  M. Walter,et al.  A possible chlorophycean affinity of some Neoproterozoic acritarchs , 1999 .

[20]  A. Kozubek,et al.  Resorcinolic Lipids, the Natural Non-isoprenoid Phenolic Amphiphiles and Their Biological Activity. , 1999, Chemical reviews.

[21]  S. George,et al.  Applications of laser micropyrolysis-gas chromatography-mass spectrometry , 1998 .

[22]  Michael A. Wilson,et al.  A new apparatus for laser micropyrolysis—gas chromatography/mass spectrometry , 1996 .

[23]  S. Derenne,et al.  Spectroscopic features of Gloeocapsomorpha prisca colonies and of interstitial matrix in kukersite as revealed by transmission micro-FT-i.r.: location of phenolic moieties , 1994 .

[24]  S. Stout Lasers in organic petrology and organic geochemistry. II: In-situ laser micropyrolysis-GCMS of coal macerals , 1993 .

[25]  P. Hatcher,et al.  Laser micropyrolysis gas chromatography/mass spectrometry of coal , 1993 .

[26]  S. Derenne,et al.  Similar morphological and chemical variations of Gloeocapsomorpha prisca in Ordovician sediments and cultured Botryococcus braunii as a response to changes in salinity , 1992 .

[27]  R. Lin,et al.  Lasers in organic petrology and organic geochemistry—I. Laser-induced fluorescence, thermal extraction, and pyrolysis , 1992 .

[28]  S. Stout,et al.  Laser pyrolysis—gas chromatography / mass spectrometry of two synthetic organic polymers , 1991 .

[29]  J. Damsté,et al.  Unique distributions of hydrocarbons and sulphur compounds released by flash pyrolysis from the fossilised alga Gloeocapsomorpha prisca, a major constituent in one of four Ordovician kerogens , 1991 .

[30]  S. Derenne,et al.  Characterization of Estonian Kukersite by spectroscopy and pyrolysis : evidence for abundant alkyl phenolic moieties in an Ordovician, marine, type II/I kerogen , 1990 .

[31]  R. Summons,et al.  Hydrocarbon biomarkers from Ordovician sediments and the fossil alga Gloeocapsomorpha prisca Zalessky 1917 , 1987 .

[32]  N. Vanderborgh,et al.  Laser microprobe mass analysis studies on coal and shale samples , 1983 .

[33]  C. Largeau,et al.  The resistant polymer of the walls of the hydrocarbon-rich alga Botryococcus braunii☆ , 1983 .