A Multi-Objective Approach to Subarrayed Linear Antenna Arrays Design Based on Memetic Differential Evolution

In this paper we present a multi-objective optimization approach to subarrayed linear antenna arrays design. We define this problem as a bi-objective one. We consider two objective functions for directivity maximization and sidelobe level minimization. Memetic algorithms (MAs) are hybrid algorithms that combine the benefits of a global search Evolutionary Algorithm (EA) with a local search method. In this paper, we introduce a new memetic multi-objective evolutionary algorithm namely the memetic generalized differential evolution (MGDE3). This algorithm is a memetic extension of the popular generalized differential evolution (GDE3) algorithm. Another popular MOEA is the nondominated sorting genetic algorithm-II (NSGA-II). MGDE3, GDE3 and NSGA-II are applied to the synthesis of uniform and nonuniform subarrayed linear arrays, providing an extensive set of solutions for each design case. Depending on the desired array characteristics, the designer can select the most suitable solution. The results of the proposed method are compared with those reported in the literature, indicating the advantages and applicability of the multi-objective approach.

[1]  Chao-Fu Wang,et al.  Synthesis of Reactively Controlled Antenna Arrays Using Characteristic Modes and DE Algorithm , 2012, IEEE Antennas and Wireless Propagation Letters.

[2]  P. Rocca,et al.  A Hybrid Approach to the Synthesis of Subarrayed Monopulse Linear Arrays , 2009, IEEE Transactions on Antennas and Propagation.

[3]  Moshe Kam,et al.  Design of phased arrays in terms of random subarrays , 1994 .

[4]  Jouni Lampinen,et al.  An Empirical Study of Control Parameters for The Third Version of Generalized Differential Evolution (GDE3) , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[5]  J. N. Sahalos,et al.  Sparse Linear Array Synthesis With Multiple Constraints Using Differential Evolution With Strategy Adaptation , 2011, IEEE Antennas and Wireless Propagation Letters.

[6]  Jing-Li Guo,et al.  Pattern Synthesis of Conformal Array Antenna in the Presence of Platform Using Differential Evolution Algorithm , 2009, IEEE Transactions on Antennas and Propagation.

[7]  R. Haupt,et al.  Optimized Weighting of Uniform Subarrays of Unequal Sizes , 2007, IEEE Transactions on Antennas and Propagation.

[8]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[9]  Anyong Qing Differential Evolution: Fundamentals and Applications in Electrical Engineering , 2009 .

[10]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[11]  Rainer Storn,et al.  Differential Evolution Research – Trends and Open Questions , 2008 .

[12]  Jouni Lampinen,et al.  Performance assessment of Generalized Differential Evolution 3 (GDE3) with a given set of problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[13]  Wen Jiang,et al.  Differential Evolution Algorithm and Method of Moments for the Design of Low-RCS Antenna , 2010, IEEE Antennas and Wireless Propagation Letters.

[14]  A. Rydberg,et al.  Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm , 2003 .

[15]  P. Rocca,et al.  Design of Subarrayed Linear and Planar Array Antennas With SLL Control Based on an Excitation Matching Approach , 2009, IEEE Transactions on Antennas and Propagation.

[16]  Randy L. Haupt Reducing grating lobes due to subarray amplitude tapering , 1985, 1985 Antennas and Propagation Society International Symposium.

[17]  Singiresu S. Rao Engineering Optimization : Theory and Practice , 2010 .

[18]  T. Isernia,et al.  An Effective Hybrid Approach for the Optimal Synthesis of Monopulse Antennas , 2007, IEEE Transactions on Antennas and Propagation.

[19]  Carlos A. Coello Coello,et al.  A comparative study of differential evolution variants for global optimization , 2006, GECCO.

[20]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[21]  P. Rocca,et al.  An Innovative Approach Based on a Tree-Searching Algorithm for the Optimal Matching of Independently Optimum Sum and Difference Excitations , 2008, IEEE Transactions on Antennas and Propagation.

[22]  Z. Nie,et al.  The Application of a Modified Differential Evolution Strategy to Some Array Pattern Synthesis Problems , 2008, IEEE Transactions on Antennas and Propagation.

[23]  Jie Cui,et al.  Pareto optimal design of multilayer microwave absorbers for wide-angle incidence using genetic algorithms , 2009 .

[24]  Shiwen Yang,et al.  Mutual coupling compensation in time modulated linear antenna arrays , 2005 .

[25]  Z. Nie,et al.  A Novel Electronic Beam Steering Technique in Time Modulated Antenna Array , 2009 .

[26]  K. Rao,et al.  Low sidelobe design considerations of large linear array antennas with contiguous subarrays , 1987 .

[27]  Robert J. Mailloux,et al.  Wideband arrays using irregular (polyomino) shaped subarrays , 2006 .

[28]  A. Massa,et al.  Optimization of the difference patterns for monopulse antennas by a hybrid real/integer-coded differential evolution method , 2005, IEEE Transactions on Antennas and Propagation.

[29]  Peter Hall,et al.  Sequentially rotated arrays with reduced sidelobe levels , 1994 .

[30]  K. C. Tan,et al.  CEC 2007 Conference Report [Conference Reports] , 2008, IEEE Computational Intelligence Magazine.

[31]  Paolo Rocca,et al.  Excitation matching procedure for sub-arrayed monopulse arrays with maximum directivity , 2009 .

[32]  J. Li,et al.  Optimization Technique Using Differential Evolution for Yagi-Uda Antennas , 2009 .

[33]  T. Samaras,et al.  Self-Adaptive Differential Evolution Applied to Real-Valued Antenna and Microwave Design Problems , 2011, IEEE Transactions on Antennas and Propagation.

[34]  P. Rocca,et al.  Sidelobe Reduction Through Element Phase Control in Uniform Subarrayed Array Antennas , 2009, IEEE Antennas and Wireless Propagation Letters.

[35]  Hong Li,et al.  Antenna optimization by hybrid differential evolution , 2010 .

[36]  Shiwen Yang,et al.  A Study on the Application of Time Modulated Antenna Arrays to Airborne Pulsed Doppler Radar , 2009, IEEE Transactions on Antennas and Propagation.

[37]  P. Rocca,et al.  Differential Evolution as Applied to Electromagnetics , 2011, IEEE Antennas and Propagation Magazine.

[38]  F. Yang,et al.  Synthesis of Conformal Phased Array With Improved NSGA-II Algorithm , 2009, IEEE Transactions on Antennas and Propagation.

[39]  R. J. Mailloux,et al.  A low-sidelobe partially overlapped constrained feed network for time-delayed subarrays , 2001 .

[40]  John N. Sahalos,et al.  Pareto Optimal Yagi-Uda Antenna Design Using Multi-Objective Differential Evolution , 2010 .

[41]  Robert J. Mailloux,et al.  Phased Array Antenna Handbook , 1993 .

[42]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[43]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[44]  Shiwen Yang,et al.  Antenna‐array pattern nulling using a differential evolution algorithm , 2004 .

[45]  Carlos A. Brizuela,et al.  A Comparison of Genetic Algorithms, Particle Swarm Optimization and the Differential Evolution Method for the Design of Scannable Circular Antenna Arrays , 2009 .

[46]  Yunkai Deng,et al.  Synthesis Technique of Array-Fed Shaped-Reflector Antenna for DBF-SAR Application , 2012, IEEE Antennas and Wireless Propagation Letters.

[47]  R. Mailloux Array grating lobes due to periodic phase, amplitude, and time delay quantization , 1984 .

[48]  M. Panduro,et al.  Design of beam-forming networks for scannable multi-beam antenna arrays using CORPS , 2008 .

[49]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[50]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[51]  N. Toyama,et al.  Aperiodic array consisting of subarrays for use in small mobile Earth stations , 2005, IEEE Transactions on Antennas and Propagation.

[52]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[53]  Sotirios K. Goudos,et al.  Application of Taguchi's Optimization Method and Self-Adaptive Differential Evolution to the Synthesis of Linear Antenna Arrays , 2010 .

[54]  R. Elliott Antenna Theory and Design , 2003 .

[55]  J. Ouyang,et al.  The Improved NSGA-II Approach , 2008 .

[56]  Sotirios K Goudos,et al.  Pareto Optimal Microwave Filter Design Using Multiobjective Differential Evolution , 2010, IEEE Transactions on Antennas and Propagation.

[57]  Quanyuan Feng,et al.  Synthesis of Unequally Spaced Antenna Arrays by Using Differential Evolution , 2010, IEEE Transactions on Antennas and Propagation.

[58]  Michael N. Vrahatis,et al.  Memetic particle swarm optimization , 2007, Ann. Oper. Res..

[59]  R. Lewontin ‘The Selfish Gene’ , 1977, Nature.

[60]  Paolo Rocca,et al.  DIRECTIVITY OPTIMIZATION IN PLANAR SUB-ARRAYED MONOPULSE ANTENNA , 2008 .

[61]  A. Massa,et al.  Optimization of the Directivity of a Monopulse Antenna With a Subarray Weighting by a Hybrid Differential Evolution Method , 2006, IEEE Antennas and Wireless Propagation Letters.

[62]  Swagatam Das,et al.  A MODIFIED DIFFERENTIAL EVOLUTION ALGORITHM FOR SHAPED BEAM LINEAR ARRAY ANTENNA DESIGN , 2012 .