Full-Length L1 Elements Have Arisen Recently in the Same 1-kb Region of the Gorilla and Human Genomes

[1]  J. V. Moran,et al.  An actively retrotransposing, novel subfamily of mouse L1 elements , 1998, The EMBO journal.

[2]  H. Hohjoh,et al.  Sequence‐specific single‐strand RNA binding protein encoded by the human LINE‐1 retrotransposon , 1997, The EMBO journal.

[3]  J. V. Moran,et al.  Many human L1 elements are capable of retrotransposition , 1997, Nature Genetics.

[4]  P. Schofield,et al.  The glycine receptor. , 1997, Pharmacology & therapeutics.

[5]  A. Smit,et al.  The origin of interspersed repeats in the human genome. , 1996, Current opinion in genetics & development.

[6]  Jef D Boeke,et al.  High Frequency Retrotransposition in Cultured Mammalian Cells , 1996, Cell.

[7]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[8]  H. Hohjoh,et al.  Cytoplasmic ribonucleoprotein complexes containing human LINE‐1 protein and RNA. , 1996, The EMBO journal.

[9]  A. Furano,et al.  DNA "Fossils" and Phylogenetic Analysis , 1995, The Journal of Biological Chemistry.

[10]  T. Heidmann,et al.  Isolation of novel human endogenous retrovirus-like elements with foamy virus-related pol sequence , 1995, Journal of virology.

[11]  A. Smit,et al.  Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. , 1995, Journal of molecular biology.

[12]  M. Fischer,et al.  The spastic mouse: Aberrant splicing of glycine receptor β subunit mRNA caused by intronic insertion of Ll element , 1994, Neuron.

[13]  C. Hutchison,et al.  Rodent L1 evolution has been driven by a single dominant lineage that has repeatedly acquired new transcriptional regulatory sequences. , 1994, Molecular biology and evolution.

[14]  H. Kazazian,et al.  A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion , 1994, Nature Genetics.

[15]  S. Kingsmore,et al.  Glycine receptor β–subunit gene mutation in spastic mouse associated with LINE–1 element insertion , 1994, Nature Genetics.

[16]  A. Sparks,et al.  Molecular resurrection of an extinct ancestral promoter for mouse L1. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[17]  R. E. Thayer,et al.  Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element. , 1993, Human molecular genetics.

[18]  A. F. Scott,et al.  Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Gibbs,et al.  A human dimorphism resulting from loss of an Alu. , 1992, Genomics.

[20]  M. Hattori,et al.  Identification of an internal cis-element essential for the human L1 transcription and a nuclear factor(s) binding to the element. , 1992, Nucleic acids research.

[21]  C. Hutchison,et al.  Strand-specific LINE-1 transcription in mouse F9 cells originates from the youngest phylogenetic subgroup of LINE-1 elements. , 1992, Journal of molecular biology.

[22]  K. Kinzler,et al.  Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. , 1992, Cancer research.

[23]  G. Cuny,et al.  A new 5' sequence associated with mouse L1 elements is representative of a major class of L1 termini. , 1992, Molecular biology and evolution.

[24]  A. F. Scott,et al.  Isolation of an active human transposable element. , 1991, Science.

[25]  J. Boeke,et al.  Reverse transcriptase encoded by a human transposable element. , 1991, Science.

[26]  K. Hawkes,et al.  African populations and the evolution of human mitochondrial DNA. , 1991, Science.

[27]  J. Jurka,et al.  Medium reiteration frequency repetitive sequences in the human genome. , 1991, Nucleic acids research.

[28]  C. Hutchison,et al.  Nucleotide sequence of a mouse full-length F-type L1 element. , 1991, Nucleic acids research.

[29]  A. Furano,et al.  Amplification of an ancestral mammalian L1 family of long interspersed repeated DNA occurred just before the murine radiation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[30]  G. Swergold Identification, characterization, and cell specificity of a human LINE-1 promoter , 1990, Molecular and cellular biology.

[31]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[32]  J. Skowroński,et al.  Unit-length line-1 transcripts in human teratocarcinoma cells , 1988, Molecular and cellular biology.

[33]  S. Antonarakis,et al.  Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man , 1988, Nature.

[34]  M F Singer,et al.  LINE-1: a mammalian transposable element. , 1987, Biochimica et biophysica acta.

[35]  A. F. Scott,et al.  Origin of the human L1 elements: Proposed progenitor genes deduced from a consensus DNA sequence☆ , 1987, Genomics.

[36]  T. Fanning,et al.  The LINE-1 DNA sequences in four mammalian orders predict proteins that conserve homologies to retrovirus proteins. , 1987, Nucleic acids research.

[37]  M. Stoneking,et al.  Mitochondrial DNA and human evolution , 1987, Nature.

[38]  M. Hattori,et al.  L1 family of repetitive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein , 1986, Nature.

[39]  C. Hutchison,et al.  Conservation throughout mammalia and extensive protein-encoding capacity of the highly repeated DNA long interspersed sequence one. , 1986, Journal of molecular biology.

[40]  C. Hutchison,et al.  The sequence of a large L1Md element reveals a tandemly repeated 5' end and several features found in retrotransposons , 1986, Molecular and cellular biology.

[41]  M. Hattori,et al.  The LINE-1 family of primates may encode a reverse transcriptase-like protein. , 1986, Cold Spring Harbor symposia on quantitative biology.

[42]  G. Grimaldi,et al.  Defining the beginning and end of KpnI family segments. , 1984, The EMBO journal.

[43]  T. Fanning Size and structure of the highly repetitive BAM HI element in mice. , 1983, Nucleic acids research.