De novo and long-term l-Dopa induce both common and distinct striatal gene profiles in the hemiparkinsonian rat

[1]  Cornelius J Werner,et al.  Proteome analysis of human substantia nigra in Parkinson's disease , 2008, Proteome Science.

[2]  Henrik Alm,et al.  Striatal Proteomic Analysis Suggests that First L-Dopa Dose Equates to Chronic Exposure , 2008, PloS one.

[3]  Steven W. Johnson,et al.  Evaluation of Levodopa Dose and Magnitude of Dopamine Depletion as Risk Factors for Levodopa-Induced Dyskinesia in a Rat Model of Parkinson's Disease , 2007, Journal of Pharmacology and Experimental Therapeutics.

[4]  Patrik Brundin,et al.  Loss of SNAP‐25 and rabphilin 3a in sensory‐motor cortex in Huntington’s disease , 2007, Journal of neurochemistry.

[5]  W. Danysz,et al.  Proteomic analysis of striatal proteins in the rat model of l‐DOPA‐induced dyskinesia , 2007, Journal of neurochemistry.

[6]  Gonzalo Flores,et al.  Alterations in dendritic morphology of the prefrontal cortical and striatum neurons in the unilateral 6‐OHDA‐rat model of Parkinson's disease , 2007, Synapse.

[7]  M. Cenci Dopamine dysregulation of movement control in l-DOPA-induced dyskinesia , 2007, Trends in Neurosciences.

[8]  Isabelle M. Mansuy,et al.  Protein serine/threonine phosphatases in neuronal plasticity and disorders of learning and memory , 2006, Trends in Neurosciences.

[9]  Anastassios V. Tzingounis,et al.  Arc/Arg3.1: Linking Gene Expression to Synaptic Plasticity and Memory , 2006, Neuron.

[10]  Henrik Alm,et al.  Normalization and expression changes in predefined sets of proteins using 2D gel electrophoresis: A proteomic study of L-DOPA induced dyskinesia in an animal model of Parkinson's disease using DIGE , 2006, BMC Bioinformatics.

[11]  P. Worley,et al.  Homer proteins: implications for neuropsychiatric disorders , 2006, Current Opinion in Neurobiology.

[12]  B. Dean,et al.  Increased levels of SNAP-25 and synaptophysin in the dorsolateral prefrontal cortex in bipolar I disorder. , 2006, Bipolar disorders.

[13]  D. Lomas,et al.  Neuroserpin: a serpin to think about , 2006, Cellular and Molecular Life Sciences CMLS.

[14]  A. Sampson,et al.  Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models , 2006, Nature Neuroscience.

[15]  A. Benabid,et al.  Coordinated and Spatial Upregulation of Arc in Striatonigral Neurons Correlates With L-Dopa-Induced Behavioral Sensitization in Dyskinetic Rats , 2005, Journal of neuropathology and experimental neurology.

[16]  E. Bézard,et al.  Unraveling substantia nigra sequential gene expression in a progressive MPTP-lesioned macaque model of Parkinson's disease , 2005, Neurobiology of Disease.

[17]  P. Giusti,et al.  A proteomic approach in the study of an animal model of Parkinson's disease. , 2005, Clinica chimica acta; international journal of clinical chemistry.

[18]  C. Konradi,et al.  Transcriptome analysis in a rat model of l-DOPA-induced dyskinesia , 2004, Neurobiology of Disease.

[19]  S. Mandel,et al.  Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes , 2004, Journal of Neural Transmission.

[20]  M. Ruberg,et al.  Differential gene expression induced by chronic levodopa treatment in the striatum of rats with lesions of the nigrostriatal system , 2004, Journal of neurochemistry.

[21]  L. Grégoire,et al.  Relevance of the MPTP primate model in the study of dyskinesia priming mechanisms. , 2004, Parkinsonism & related disorders.

[22]  T. Chase Striatal plasticity and extrapyramidal motor dysfunction. , 2004, Parkinsonism & related disorders.

[23]  Jonathan Pevsner,et al.  Progress in the use of microarray technology to study the neurobiology of disease , 2004, Nature Neuroscience.

[24]  J. Obeso,et al.  The origin of motor fluctuations in Parkinson’s disease , 2004, Neurology.

[25]  A. Benabid,et al.  Quantification of DNA probes on nylon microarrays using T4 polynucleotide kinase labeling. , 2003, BioTechniques.

[26]  Paul Greengard,et al.  Loss of bidirectional striatal synaptic plasticity in L-DOPA–induced dyskinesia , 2003, Nature Neuroscience.

[27]  S. Mandel,et al.  Using cDNA microarray to assess Parkinson's disease models and the effects of neuroprotective drugs. , 2003, Trends in pharmacological sciences.

[28]  C. Stichel,et al.  The mouse MPTP model: gene expression changes in dopaminergic neurons , 2003, The European journal of neuroscience.

[29]  A. Benabid,et al.  Long oligonucleotide arrays on nylon for large-scale gene expression analysis. , 2002, BioTechniques.

[30]  C. Gerfen,et al.  D1 Dopamine Receptor Supersensitivity in the Dopamine-Depleted Striatum Results from a Switch in the Regulation of ERK1/2/MAP Kinase , 2002, The Journal of Neuroscience.

[31]  Erwan Bezard,et al.  Pathophysiology of levodopa-induced dyskinesia: Potential for new therapies , 2001, Nature Reviews Neuroscience.

[32]  J. Obeso,et al.  Pathophysiology of the basal ganglia in Parkinson's disease , 2000, Trends in Neurosciences.

[33]  M. Andersson,et al.  Striatal fosB Expression Is Causally Linked with l -DOPA-Induced Abnormal Involuntary Movements and the Associated Upregulation of Striatal Prodynorphin mRNA in a Rat Model of Parkinson's Disease , 1999, Neurobiology of Disease.

[34]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[35]  A. Björklund,et al.  L‐DOPA‐induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin‐ and glutamic acid decarboxylase mRNA , 1998, The European journal of neuroscience.

[36]  S. Hyman,et al.  A Complex Program of Striatal Gene Expression Induced by Dopaminergic Stimulation , 1998, The Journal of Neuroscience.

[37]  K. Collins,et al.  Mouse Model of Hyperkinesis Implicates SNAP-25 in Behavioral Regulation , 1996, The Journal of Neuroscience.

[38]  G. Chiara,et al.  l-Dopa stimulates c-fos expression in dopamine denervated striatum by combined activation of D-1 and D-2 receptors , 1993, Brain Research.

[39]  A. Barbeau L-dopa therapy in Parkinson's disease: a critical review of nine years' experience. , 1969, Canadian Medical Association journal.

[40]  E. Bézard,et al.  Molecular mechanisms of l-DOPA-induced dyskinesia. , 2011, International review of neurobiology.

[41]  K. Szumlinski,et al.  Homers regulate drug-induced neuroplasticity: implications for addiction. , 2008, Biochemical pharmacology.

[42]  L. Defebvre [Motor complications in dopa treatment of parkinson disease: clinical description and evaluation]. , 2004, Therapie.

[43]  L. Defebvre Les complications motrices de la dopathérapie chez le malade parkinsonien : sémiologie clinique et modalités d’évaluation , 2004 .

[44]  Zhengping Jia,et al.  Regulation of Spine Morphology and Synaptic Function by LIMK and the Actin Cytoskeleton , 2003, Reviews in the neurosciences.