Supervisory Control Strategy Development
暂无分享,去创建一个
Task 4 of this collaborative effort between ORNL, Brazil, and Westinghouse for the International Nuclear Energy Research Initiative entitled “Development of Advanced Instrumentation and Control for an Integrated Primary System Reactor” focused on the design of the hierarchical supervisory control for multiple-module units. The state of the IRIS plant design – specifically, the lack of a detailed secondary system design – made developing a detailed hierarchical control difficult at this time. However, other simultaneous and ongoing efforts have contributed to providing the needed information. This report summarizes the results achieved under Task 4 of this Financial Assistance Award. Section 1.2 describes the scope of this effort. Section 2 discusses the IRIS control functions. Next, it briefly reviews the current control concepts, and then reviews the maneuvering requirements for the IRIS plant. It closes by noting the benefits that automated sequences have in reducing operator workload. Section 3 examines reactor loading in the frequency domain to establish some guidelines for module operation, paying particular attention to strategies for using process steam for desalination and/or district heating. The final subsection discusses the implications for reactor control, and argues that using the envisioned percentage (up to 10%) of the NSSS thermal output formore » these purposes should not significantly affect the NSSS control strategies. Section 4 uses some very general economic assumptions to suggest how one should approach multi-module operation. It concludes that the well-known algorithms used for economic dispatching could be used to help manage a multi-unit IRIS site. Section 5 addresses the human performance factors of multi-module operation. Section 6 summarizes our conclusions.« less