Age-dependent action of reactive oxygen species on transmitter release in mammalian neuromuscular junctions

[1]  R. Giniatullin,et al.  Homocysteine aggravates ROS-induced depression of transmitter release from motor nerve terminals: potential mechanism of peripheral impairment in motor neuron diseases associated with hyperhomocysteinemia , 2015, Front. Cell. Neurosci..

[2]  M. Santafé,et al.  Adenosine receptors and muscarinic receptors cooperate in acetylcholine release modulation in the neuromuscular synapse , 2015, The European journal of neuroscience.

[3]  Lauren E. Salminen,et al.  Oxidative stress and genetic markers of suboptimal antioxidant defense in the aging brain: a theoretical review , 2014, Reviews in the neurosciences.

[4]  W. Roberts,et al.  PO2 Cycling Reduces Diaphragm Fatigue by Attenuating ROS Formation , 2014, PloS one.

[5]  R. Reiter,et al.  Oxidative Stress-Mediated Aging during the Fetal and Perinatal Periods , 2014, Oxidative medicine and cellular longevity.

[6]  E. Barrett,et al.  Dysfunctional mitochondrial Ca2+ handling in mutant SOD1 mouse models of fALS: integration of findings from motor neuron somata and motor terminals , 2014, Front. Cell. Neurosci..

[7]  Li-Li Zuo,et al.  The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson's disease. , 2013, Gene.

[8]  Hiroshi Mitsumoto,et al.  Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. , 2013, Free radical biology & medicine.

[9]  I. Kovyazina,et al.  Redox-sensitive synchronizing action of adenosine on transmitter release at the neuromuscular junction , 2013, Neuroscience.

[10]  L. Sanders,et al.  Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. , 2013, Free radical biology & medicine.

[11]  Xinglong Wang,et al.  Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. , 2013, Free radical biology & medicine.

[12]  Sarah M. Greising,et al.  Diaphragm muscle sarcopenia in aging mice , 2013, Experimental Gerontology.

[13]  J. Pillow,et al.  Developmental regulation of molecular signalling in fetal and neonatal diaphragm protein metabolism , 2013, Experimental biology and medicine.

[14]  M. Atalay,et al.  Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. , 2013, Antioxidants & redox signaling.

[15]  M. Rice,et al.  Classification of H₂O₂as a neuromodulator that regulates striatal dopamine release on a subsecond time scale. , 2012, ACS chemical neuroscience.

[16]  A. M. Correia,et al.  Neuromuscular transmission modulation by adenosine upon aging , 2012, Neurobiology of Aging.

[17]  N. Chandel,et al.  Physiological roles of mitochondrial reactive oxygen species. , 2012, Molecular cell.

[18]  T. Mizushige,et al.  Active zone density is conserved during synaptic growth but impaired in aged mice , 2012, The Journal of comparative neurology.

[19]  J. Koistinaho,et al.  Gender-Specific Mechanism of Synaptic Impairment and Its Prevention by GCSF in a Mouse Model of ALS , 2011, Front. Cell. Neurosci..

[20]  M. Deschenes,et al.  Motor unit and neuromuscular junction remodeling with aging. , 2011, Current aging science.

[21]  M. Jackson Control of reactive oxygen species production in contracting skeletal muscle. , 2011, Antioxidants & redox signaling.

[22]  C. Limatola,et al.  CX3CR1 Deficiency Alters Hippocampal-Dependent Plasticity Phenomena Blunting the Effects of Enriched Environment , 2011, Front. Cell. Neurosci..

[23]  M. Rice H2O2: a dynamic neuromodulator. , 2011, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[24]  M. Negro,et al.  Oxidative system in aged skeletal muscle. , 2011, Muscles, ligaments and tendons journal.

[25]  M. Jackson,et al.  Age‐related changes in skeletal muscle reactive oxygen species generation and adaptive responses to reactive oxygen species , 2011, The Journal of physiology.

[26]  M. Valko,et al.  Metals, oxidative stress and neurodegenerative disorders , 2010, Molecular and Cellular Biochemistry.

[27]  A. Musarò,et al.  Oxidative stress and muscle homeostasis , 2010, Current opinion in clinical nutrition and metabolic care.

[28]  M. J. Jackson,et al.  Redox regulation in skeletal muscle during contractile activity and aging. , 2010, Journal of animal science.

[29]  G. Hajnóczky,et al.  SR/ER-mitochondrial local communication: calcium and ROS. , 2009, Biochimica et biophysica acta.

[30]  H. Miyata,et al.  Age-related changes in contraction and relaxation of rat diaphragm. , 2009, Biomedical research.

[31]  S. Powers,et al.  Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. , 2008, Physiological reviews.

[32]  H. Forman Use and abuse of exogenous H2O2 in studies of signal transduction. , 2007, Free radical biology & medicine.

[33]  B. Davletov,et al.  SNAP25 is a pre‐synaptic target for the depressant action of reactive oxygen species on transmitter release , 2006, Journal of neurochemistry.

[34]  S. Rhee,et al.  H2O2, a Necessary Evil for Cell Signaling , 2006, Science.

[35]  M. Santafé,et al.  Muscarinic autoreceptors modulate transmitter release through protein kinase C and protein kinase A in the rat motor nerve terminal , 2006, The European journal of neuroscience.

[36]  J. Faulkner,et al.  Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity , 2006, Aging cell.

[37]  J. Barclay,et al.  Calcium-dependent regulation of exocytosis. , 2005, Cell calcium.

[38]  M. Santafé,et al.  Calcium inflow‐dependent protein kinase C activity is involved in the modulation of transmitter release in the neuromuscular junction of the adult rat , 2005, Synapse.

[39]  M. Emond,et al.  Extension of Murine Life Span by Overexpression of Catalase Targeted to Mitochondria , 2005, Science.

[40]  E. Sharifullina,et al.  Reactive oxygen species contribute to the presynaptic action of extracellular ATP at the frog neuromuscular junction , 2005, The Journal of physiology.

[41]  S. Fulle,et al.  Age-dependent imbalance of the antioxidative system in human satellite cells , 2005, Experimental Gerontology.

[42]  Robert S. Balaban,et al.  Mitochondria, Oxidants, and Aging , 2005, Cell.

[43]  C. Winters,et al.  Strong Calcium Entry Activates Mitochondrial Superoxide Generation, Upregulating Kinase Signaling in Hippocampal Neurons , 2004, The Journal of Neuroscience.

[44]  R. Giniatullin,et al.  Dual Action of Hydrogen Peroxide on Synaptic Transmission at the Frog Neuromuscular Junction , 2003, The Journal of physiology.

[45]  M. Talantova,et al.  Distinct receptors and different transduction mechanisms for ATP and adenosine at the frog motor nerve endings , 2003, The European journal of neuroscience.

[46]  S. Black,et al.  Developmental Changes in Murine Brain Antioxidant Enzymes , 2003, Pediatric Research.

[47]  O. Delbono Neural control of aging skeletal muscle , 2003, Aging cell.

[48]  N. Taniguchi,et al.  Down-regulation of Hydrogen Peroxide-induced PKCδ Activation in N-Acetylglucosaminyltransferase III-transfected HeLaS3 Cells* , 2003, The Journal of Biological Chemistry.

[49]  M. Reid,et al.  Detection of reactive oxygen and reactive nitrogen species in skeletal muscle , 2001, Microscopy research and technique.

[50]  M. Santafé,et al.  Calcium channels coupled to neurotransmitter release at dually innervated neuromuscular junctions in the newborn rat , 2001, Neuroscience.

[51]  L. Ji,et al.  Aging and acute exercise enhance free radical generation in rat skeletal muscle. , 1999, Journal of applied physiology.

[52]  O. Uchitel,et al.  Calcium channels coupled to neurotransmitter release at neonatal rat neuromuscular junctions , 1999, The Journal of physiology.

[53]  Tobias Meyer,et al.  Protein Kinase C as a Molecular Machine for Decoding Calcium and Diacylglycerol Signals , 1998, Cell.

[54]  J. Molgó,et al.  Cholinergic agonists decrease quantal output at the frog neuromuscular junction by targeting a calcium channel blocked by ω-conotoxin , 1997, Pflügers Archiv.

[55]  J. G. Breugelmans,et al.  Developmental differences in endplate response to P-type calcium channel blockade in the rat diaphragm. , 1997, Brain research. Developmental brain research.

[56]  C. Ko,et al.  Novel Modulatory Effect of L-Type Calcium Channels at Newly Formed Neuromuscular Junctions , 1997, The Journal of Neuroscience.

[57]  P. Correia‐de‐Sá,et al.  Presynaptic A1 inhibitory/A2A facilitatory adenosine receptor activation balance depends on motor nerve stimulation paradigm at the rat hemidiaphragm. , 1996, Journal of neurophysiology.

[58]  L. Phebus,et al.  Measurement of striatal H2O2 by microdialysis following global forebrain ischemia and reperfusion in the rat: correlation with the cytotoxic potential of H2O2 in vitro , 1995, Brain Research.

[59]  M. Reid,et al.  Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. , 1992, Journal of applied physiology.

[60]  E. D’Angelo,et al.  Protein Kinase C Facilitation of Acetylcholine Release at the Rat Neuromuscular Junction , 1992, The European journal of neuroscience.

[61]  C. Carlson Early postnatal changes in presynaptic potassium sensitivity. , 1992, Brain research. Developmental brain research.

[62]  S. Wolff,et al.  Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. , 1992, Analytical biochemistry.

[63]  M. Brown,et al.  Effects of ageing and exercise on soleus and extensor digitorum longus muscles of female rats , 1992, Mechanisms of Ageing and Development.

[64]  M. Dennis,et al.  Development of neuromuscular junctions in rat embryos. , 1981, Developmental biology.

[65]  M. Glavinović Voltage clamping of unparalysed cut rat diaphragm for study of transmitter release. , 1979, The Journal of physiology.

[66]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[67]  R. Miledi,et al.  A study of foetal and new‐born rat muscle fibres , 1962, The Journal of physiology.

[68]  Carsten Schultz,et al.  Does cellular hydrogen peroxide diffuse or act locally? , 2011, Antioxidants & redox signaling.

[69]  J. Gal,et al.  Mitochondrial dysfunction in amyotrophic lateral sclerosis. , 2010, Biochimica et biophysica acta.

[70]  S. Sheu,et al.  Crosstalk signaling between mitochondrial Ca2+ and ROS. , 2009, Frontiers in Bioscience.

[71]  S. Rhee Cell signaling. H2O2, a necessary evil for cell signaling. , 2006, Science.

[72]  W. Dröge Free radicals in the physiological control of cell function. , 2002, Physiological reviews.

[73]  L. Deiana,et al.  Spectrophotometric measurement of hydroperoxides at increased sensitivity by oxidation of Fe2+ in the presence of xylenol orange. , 1999, Free radical research.

[74]  S. Wolff [18] Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides , 1994 .