An X‐FEM approach for large sliding contact along discontinuities

The extended finite element method (X-FEM) has been developed to minimize requirements on the mesh design in a problem with a displacement discontinuity. This advantage, however, still remains limited to the small deformation hypothesis when considering sliding discontinuities. The approach presented in this paper proposes to couple X-FEM with a Lagrangian large sliding frictionless contact algorithm. A new hybrid X-FEM contact element was developed with a contact search algorithm allowing for an update of contacting surfaces pairing. The stability of the contact formulation is ensured by an algorithm for fulfilling Ladyzhenskaya-Babuska-Brezzi (LBB) condition. Several 2D simple examples are presented in this paper in order to prove its efficiency and stability. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  Panayiotis Papadopoulos,et al.  An analysis of dual formulations for the finite element solution of two-body contact problems , 2005 .

[2]  元 松岡,et al.  “Stress-Deformation and Strength Characteristics of Soil under Three Different Principal Stresses” への討議 , 1976 .

[3]  Georges Dumont,et al.  Algorithme de contraintes actives et contact unilatéral sans frottement , 1995 .

[4]  Amir R. Khoei,et al.  An enriched finite element algorithm for numerical computation of contact friction problems , 2007 .

[5]  Teruo Nakai,et al.  STRESS-DEFORMATION AND STRENGTH CHARACTERISTICS OF SOIL UNDER THREE DIFFERENT PRINCIPAL STRESSES , 1974 .

[6]  J. Suppe,et al.  Mechanics of extension and inversion in the hanging walls of listric normal faults , 2001 .

[7]  Nils-Erik Wiberg,et al.  Two‐dimensional mesh generation, adaptive remeshing and refinement , 1990 .

[8]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[9]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[10]  Guido Schreurs,et al.  Comparisons between analogue and numerical models of thrust wedge development , 2004 .

[11]  T. Laursen,et al.  A mortar‐finite element formulation for frictional contact problems , 2000 .

[12]  Pierre Thore,et al.  Structural uncertainties: Determination, management, and applications , 2002 .

[13]  T. Belytschko,et al.  Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment , 2003 .

[14]  J. C. Simo,et al.  A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems , 1993 .

[15]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[16]  Kevin J. Smart,et al.  Deformation behavior during blind thrust translation as a function of fault strength , 1999 .

[17]  J. Dolbow,et al.  A note on enrichment functions for modelling crack nucleation , 2003 .

[18]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[19]  Malek Zarroug,et al.  Hybrid frictional contact particles-in elements , 2002 .

[20]  Ronaldo I. Borja,et al.  Mechanical aspects of thrust faulting driven by far-field compression and their implications for fold geometry , 2007 .

[21]  Samuel Geniaut,et al.  A stable 3D contact formulation using X-FEM , 2007 .

[22]  Ted Belytschko,et al.  A method for dynamic crack and shear band propagation with phantom nodes , 2006 .

[23]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[24]  T. Belytschko,et al.  A method for multiple crack growth in brittle materials without remeshing , 2004 .

[25]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[26]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[27]  N. Moës,et al.  Improved implementation and robustness study of the X‐FEM for stress analysis around cracks , 2005 .

[28]  Stuart Hardy,et al.  Sequential Restoration and Unstraining of Structural Cross Sections: Applications to Extensional Terranes , 2000 .

[29]  J. Salençon Handbook of continuum mechanics , 2001 .

[30]  Kyung K. Choi,et al.  3‐D shape optimal design and automatic finite element regridding , 1989 .

[31]  Tae-Yeon Kim,et al.  A mortared finite element method for frictional contact on arbitrary interfaces , 2006 .

[32]  R Huiskes,et al.  The biomechanics of the human patella during passive knee flexion. , 1995, Journal of biomechanics.

[33]  Michel Salaün,et al.  High‐order extended finite element method for cracked domains , 2005 .

[34]  F. Maerten,et al.  Chronologic modeling of faulted and fractured reservoirs using geomechanically based restoration: Technique and industry applications , 2006 .

[35]  F. Lepage Génération de maillages tridimensionnels pour la simulation des phénomènes physiques en géosciences , 2003 .

[36]  J. Oliver,et al.  Strong discontinuities and continuum plasticity models: the strong discontinuity approach , 1999 .

[37]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[38]  Olivier Pantalé,et al.  Numerical propagation of dynamic cracks using X-FEM , 2007 .

[39]  Yves M. Leroy,et al.  Activation of diffuse discontinuities and folding of sedimentary layers , 2003 .

[40]  Klaus-Jürgen Bathe,et al.  The inf–sup condition and its evaluation for mixed finite element methods , 2001 .

[41]  Reese E. Jones,et al.  A novel finite element formulation for frictionless contact problems , 1995 .

[42]  K. Bathe,et al.  Stability and patch test performance of contact discretizations and a new solution algorithm , 2001 .

[43]  Ted Belytschko,et al.  Analysis of fracture in thin shells by overlapping paired elements , 2006 .

[44]  M. Ortiz,et al.  Modelling and simulation of high-speed machining , 1995 .

[45]  Samir Maghous,et al.  Evolution of elastic properties in finite poroplasticity and finite element analysis , 2002 .

[46]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[47]  J. Prévost,et al.  Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation , 2003 .

[48]  Nicolas Moës,et al.  Imposing Dirichlet boundary conditions in the extended finite element method , 2006 .

[49]  Yu-Kan Hu,et al.  Finite element hydrodynamic friction model for metal forming , 1994 .