Political Ideology Detection Using Recursive Neural Networks

An individual’s words often reveal their political ideology. Existing automated techniques to identify ideology from text focus on bags of words or wordlists, ignoring syntax. Taking inspiration from recent work in sentiment analysis that successfully models the compositional aspect of language, we apply a recursive neural network (RNN) framework to the task of identifying the political position evinced by a sentence. To show the importance of modeling subsentential elements, we crowdsource political annotations at a phrase and sentence level. Our model outperforms existing models on our newly annotated dataset and an existing dataset.

[1]  Robert L. Mercer,et al.  Class-Based n-gram Models of Natural Language , 1992, CL.

[2]  G. Lakoff Moral Politics: How Liberals and Conservatives Think , 1996 .

[3]  Christoph Goller,et al.  Learning task-dependent distributed representations by backpropagation through structure , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[4]  D. Niven Objective Evidence on Media Bias: Newspaper Coverage of Congressional Party Switchers , 2003 .

[5]  Janyce Wiebe,et al.  Learning Subjective Language , 2004, CL.

[6]  Tim Groseclose,et al.  A Measure of Media Bias , 2005 .

[7]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[8]  Matt Thomas,et al.  Get out the vote: Determining support or opposition from Congressional floor-debate transcripts , 2006, EMNLP.

[9]  Jason Weston,et al.  A unified architecture for natural language processing: deep neural networks with multitask learning , 2008, ICML '08.

[10]  Wei-Hao Lin,et al.  A Joint Topic and Perspective Model for Ideological Discourse , 2008, ECML/PKDD.

[11]  Amber E. Boydstun,et al.  Media Framing of Capital Punishment and Its Impact on Individuals' Cognitive Responses , 2008 .

[12]  Philip Resnik,et al.  More than Words: Syntactic Packaging and Implicit Sentiment , 2009, NAACL.

[13]  K. T. Poole,et al.  Measuring Bias and Uncertainty in DW-NOMINATE Ideal Point Estimates via the Parametric Bootstrap , 2008, Political Analysis.

[14]  Noah A. Smith,et al.  Shedding (a Thousand Points of) Light on Biased Language , 2010, Mturk@HLT-NAACL.

[15]  Eric P. Xing,et al.  Staying Informed: Supervised and Semi-Supervised Multi-View Topical Analysis of Ideological Perspective , 2010, EMNLP.

[16]  Sean Gerrish,et al.  Predicting Legislative Roll Calls from Text , 2011, ICML.

[17]  Burr Settles,et al.  Closing the Loop: Fast, Interactive Semi-Supervised Annotation With Queries on Features and Instances , 2011, EMNLP.

[18]  Jeffrey Pennington,et al.  Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection , 2011, NIPS.

[19]  Jeffrey Pennington,et al.  Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions , 2011, EMNLP.

[20]  Jordan L. Boyd-Graber,et al.  Grammatical structures for word-level sentiment detection , 2012, NAACL.

[21]  Viet-An Nguyen,et al.  Lexical and Hierarchical Topic Regression , 2013, NIPS.

[22]  Daniel Jurafsky,et al.  Linguistic Models for Analyzing and Detecting Biased Language , 2013, ACL.

[23]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[24]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[25]  Phil Blunsom,et al.  The Role of Syntax in Vector Space Models of Compositional Semantics , 2013, ACL.

[26]  Noah A. Smith,et al.  Measuring Ideological Proportions in Political Speeches , 2013, EMNLP.

[27]  Andrew Y. Ng,et al.  Parsing with Compositional Vector Grammars , 2013, ACL.

[28]  Takashi Chikayama,et al.  Simple Customization of Recursive Neural Networks for Semantic Relation Classification , 2013, EMNLP.

[29]  Noah A. Smith,et al.  Testing the Etch-a-Sketch Hypothesis: A Computational Analysis of Mitt Romney's Ideological Makeover During the 2012 Primary vs. General Elections , 2013 .

[30]  Загоровская Ольга Владимировна,et al.  Исследование влияния пола и психологических характеристик автора на количественные параметры его текста с использованием программы Linguistic Inquiry and Word Count , 2015 .

[31]  G. Lakoff Moral Politics: How Liberals and Conservatives Think, Third Edition , 2016 .

[32]  Navneet Kaur,et al.  Opinion mining and sentiment analysis , 2016, 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom).