Ultrafast carbon monoxide photolysis and heme spin-crossover in myoglobin via nonadiabatic quantum dynamics

[1]  J. L. Albright Critical Analysis , 2020, Management Control Systems and Tools for Internationalization Success.

[2]  Claudia Lehmann Theoretical investigation , 2018, Exploring Service Productivity.

[3]  B. Abel,et al.  Light-induced relaxation dynamics of the ferricyanide ion revisited by ultrafast XUV photoelectron spectroscopy. , 2017, Physical chemistry chemical physics : PCCP.

[4]  M. Nielsen,et al.  Coherent structural trapping through wave packet dispersion during photoinduced spin state switching , 2017, Nature Communications.

[5]  U. Manthe Wavepacket dynamics and the multi-configurational time-dependent Hartree approach , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  T. Penfold,et al.  Effect of tert-Butyl Functionalization on the Photoexcited Decay of a Fe(II)-N-Heterocyclic Carbene Complex , 2016 .

[7]  Rebecca K. Carlson,et al.  Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table , 2016, J. Comput. Chem..

[8]  Sébastien Boutet,et al.  Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation , 2015, Science.

[9]  M. Chergui,et al.  Sub-50-fs photoinduced spin crossover in [Fe(bpy)₃]²⁺. , 2015, Nature chemistry.

[10]  G. Schirò,et al.  Observing heme doming in myoglobin with femtosecond X-ray absorption spectroscopya) , 2015, Structural dynamics.

[11]  Matteo Levantino,et al.  Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser , 2015, Nature Communications.

[12]  C. Daniel,et al.  Spin-vibronic quantum dynamics for ultrafast excited-state processes. , 2015, Accounts of chemical research.

[13]  C. de Graaf,et al.  Ultrafast deactivation mechanism of the excited singlet in the light-induced spin crossover of [Fe(2,2'-bipyridine)3]2+. , 2013, Chemistry.

[14]  A. Debnath,et al.  State-selective excitation of the CO stretch in carboxyhemoglobin by mid-IR laser pulse shaping: a theoretical investigation. , 2013, The journal of physical chemistry. A.

[15]  I. Bersuker Pseudo-Jahn-teller effect--a two-state paradigm in formation, deformation, and transformation of molecular systems and solids. , 2013, Chemical reviews.

[16]  S. Ohkoshi,et al.  Light-induced spin-crossover magnet. , 2011, Nature chemistry.

[17]  Ville R. I. Kaila,et al.  Reduction of the virtual space for coupled-cluster excitation energies of large molecules and embedded systems. , 2011, The Journal of chemical physics.

[18]  K. Morokuma,et al.  Modeling Enzymatic Reactions in Metalloenzymes and Photobiology by Quantum Mechanics (QM) and Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations , 2010 .

[19]  B. Roos The Complete Active Space Self‐Consistent Field Method and its Applications in Electronic Structure Calculations , 2007 .

[20]  T. Ohta,et al.  Excited state property of hardly photodissociable heme-CO adduct studied by time-dependent density functional theory. , 2005, Journal of Physical Chemistry B.

[21]  C. Meier,et al.  Laser control of vibrational excitation in carboxyhemoglobin: a quantum wave packet study. , 2005, The Journal of chemical physics.

[22]  Roland Lindh,et al.  New relativistic ANO basis sets for transition metal atoms. , 2005, The journal of physical chemistry. A.

[23]  O. Kühn Multidimensional vibrational quantum dynamics of CO–heme compounds: ultrafast IVR mediated Fe–CO bond-breaking after CO excitation? , 2005 .

[24]  J. Harvey,et al.  Spin-forbidden CO ligand recombination in myoglobin. , 2004, Faraday discussions.

[25]  B. Roos,et al.  Relativistic quantum chemistry: the multiconfigurational approach , 2004 .

[26]  Roland Lindh,et al.  Main group atoms and dimers studied with a new relativistic ANO basis set , 2004 .

[27]  R. Car,et al.  Role of ligand bending in the photodissociation of O2 vs CO-heme: a time-dependent density functional study. , 2003, Journal of the American Chemical Society.

[28]  Haobin Wang,et al.  Multilayer formulation of the multiconfiguration time-dependent Hartree theory , 2003 .

[29]  M. Head‐Gordon,et al.  Initial Steps of the Photodissociation of the CO Ligated Heme Group , 2003 .

[30]  M. Head‐Gordon,et al.  Characterization of the relevant excited states in the photodissociation of CO-ligated hemoglobin and myoglobin. , 2002, Journal of the American Chemical Society.

[31]  J. Tse,et al.  Doming modes and dynamics of model heme compounds , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M Eichinger,et al.  Influence of the heme pocket conformation on the structure and vibrations of the Fe-CO bond in myoglobin: a QM/MM density functional study. , 2001, Biophysical journal.

[33]  L. Kiger,et al.  Heme photolysis occurs by ultrafast excited state metal-to-ring charge transfer. , 2001, Biophysical journal.

[34]  T. Spiro,et al.  Is the CO adduct of myoglobin bent, and does it matter? , 2001, Accounts of chemical research.

[35]  Jeremy N. Harvey,et al.  DFT Computation of the Intrinsic Barrier to CO Geminate Recombination with Heme Compounds , 2000 .

[36]  M. Parrinello,et al.  Harmonic and anharmonic dynamics of Fe-CO and Fe-O(2) in heme models. , 2000, Biophysical journal.

[37]  Y. Mizutani,et al.  Direct observation of cooling of heme upon photodissociation of carbonmonoxy myoglobin. , 1997, Science.

[38]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[39]  U. Manthe,et al.  The multi-configurational time-dependent Hartree approach , 1990 .

[40]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[41]  J. Petrich,et al.  Photophysics and reactivity of heme proteins: a femtosecond absorption study of hemoglobin, myoglobin, and protoheme. , 1988, Biochemistry.

[42]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[43]  R D Young,et al.  Protein states and proteinquakes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[44]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[45]  I. Bersuker,et al.  The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry , 1984 .

[46]  G. Loew,et al.  Quantum mechanical studies of the photodissociation of carbonylheme complexes , 1982 .

[47]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[48]  Fran Adar,et al.  Fluorescence, resonance Raman, and radiationless decay in several hemoproteins , 1976 .

[49]  W J BOWEN,et al.  The absorption spectra and extinction coefficients of myoglobin. , 1949, The Journal of biological chemistry.

[50]  J. L. Smith,et al.  The Oxygen Tension of Arterial Blood , 1896, The Journal of physiology.