On the Analysis and Design of Fractional-Order Chebyshev Complex Filter

This paper introduces the concept of fractional-order complex Chebyshev filter. A fractional variation of Chebyshev differential equations is introduced based on Caputo fractional operator. The proposed equation is solved using fractional Taylor power series method. The condition for fractional polynomial solutions is obtained and the first four polynomials scaled using an appropriate scaling factor. The fractional-order complex Chebyshev low-pass filter based on the obtained fractional polynomials is developed. Two methods for obtaining the transfer functions of the complex filter are discussed. Circuit implementations are simulated using Advanced Design System (ADS) and compared with MATLAB numerical simulation of the obtained transfer functions to prove the validity of the two approaches.

[1]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[2]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[3]  Omid Solaymani Fard,et al.  A note on fuzzy best approximation using Chebyshev's polynomials , 2011 .

[4]  Xiaoxing Zhang,et al.  A second-order active bandpass filter with complex coefficients and its applications to the hilbert transform , 1996 .

[5]  A. Elwakil,et al.  On the stability of linear systems with fractional-order elements , 2009 .

[6]  Ahmed S. Elwakil,et al.  Towards the realization of fractional step filters , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[7]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[8]  Margarita Rivero,et al.  alpha-Analytic solutions of some linear fractional differential equations with variable coefficients , 2007, Appl. Math. Comput..

[9]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[10]  J. Mahattanakul,et al.  A low-voltage low-power complex active-RC filter employing single-stage opamp , 2012, 2012 IEEE International Conference on Electron Devices and Solid State Circuit (EDSSC).

[11]  M. E. Valkenburg,et al.  Design of Analog Filters , 2001 .

[12]  Jeong-Soo Lim,et al.  A modified Chebyshev bandpass filter with attenuation poles in the stopband , 1997 .

[13]  Mahesh S. Chavan Comparative Study of Chebyshev I and Chebyshev II Filter used For Noise Reduction in ECG Signal , 2008 .

[14]  M. A. Al-Bassam On the existence of series solution of differential equations of generalized order , 1970 .

[15]  Costas Psychalinos,et al.  1.5-V Complex Filters Using Current Mirrors , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  Ahmed S. Elwakil,et al.  First-Order Filters Generalized to the fractional Domain , 2008, J. Circuits Syst. Comput..

[17]  Christopher S. Goodrich,et al.  Existence of a positive solution to a class of fractional differential equations , 2010, Appl. Math. Lett..

[18]  Ervin K. Lenzi,et al.  Solutions for a fractional diffusion equation: Anomalous diffusion and adsorption–desorption processes , 2016 .

[19]  Khaled N. Salama,et al.  The fractional-order modeling and synchronization of electrically coupled neuron systems , 2012, Comput. Math. Appl..

[20]  Costas Psychalinos,et al.  Complex Filters for Short Range Wireless Networks , 2012 .

[21]  Sebastian J. Schreiber Ordinary Differential Equations , 2012 .

[22]  Muhammad Faryad,et al.  Fractional Rectangular Waveguide , 2007 .

[23]  J. Machado,et al.  A Review of Definitions for Fractional Derivatives and Integral , 2014 .

[24]  J. Valsa,et al.  Network Model of the CPE , 2011 .

[25]  J. Ritt,et al.  A factorization theory for functions ∑ᵢ₌₁ⁿᵢ^{ᵢ} , 1927 .

[26]  Cosy Muto,et al.  A new expanded frequency transformation for complex analog filter design , 2000 .

[27]  Debasmita Mondal,et al.  Effect of Initialization on a Class of Fractional Order Systems: Experimental Verification and Dependence on Nature of Past History and System Parameters , 2013, Circuits Syst. Signal Process..

[28]  Yangquan Chen,et al.  A new IIR-type digital fractional order differentiator , 2003, Signal Process..

[29]  Dominik Sierociuk,et al.  Diffusion process modeling by using fractional-order models , 2015, Appl. Math. Comput..

[30]  Biju K. Dutta,et al.  Approximate solution of inhomogeneous fractional differential equation , 2012 .

[31]  Ahmed S. Elwakil,et al.  On the Generalization of Second-Order Filters to the fractional-Order Domain , 2009, J. Circuits Syst. Comput..

[32]  Masahiro Iwahashi,et al.  Realization of Universal Active Complex Filter Using CCIIs and CFCCIIs , 1998 .

[33]  Michiel Steyaert,et al.  Transceivers in the Frequency Domain , 2003 .

[34]  Vasily E. Tarasov Discrete model of dislocations in fractional nonlocal elasticity , 2016 .

[35]  Wojciech Okrasiński,et al.  A note on fractional Bessel equation and its asymptotics , 2013 .

[36]  T. Freeborn,et al.  Approximated Fractional Order Chebyshev Lowpass Filters , 2015 .

[37]  Yukio Ishibashi,et al.  Synthesis of a Passive Complex Filter Using Transformers , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[38]  Ahmed S. Elwakil,et al.  Approximated Fractional-Order Inverse Chebyshev Lowpass Filters , 2016, Circuits Syst. Signal Process..

[39]  Costas Psychalinos,et al.  Low-Voltage Complex Filters Using Current Feedback Operational Amplifiers , 2013 .

[40]  Shantanu Das,et al.  Extending the concept of analog Butterworth filter for fractional order systems , 2012, Signal Process..

[41]  I. S. Jesus,et al.  Fractional control of heat diffusion systems , 2008 .

[42]  Ahmed S. Elwakil,et al.  Fractional-order sinusoidal oscillators: Design procedure and practical examples , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[43]  Soliman A. Mahmoud,et al.  Low-Voltage CMOS Current Feedback Operational Amplifier and Its Application , 2007 .

[44]  Yangquan Chen,et al.  A Fractional Order Proportional and Derivative (FOPD) Motion Controller: Tuning Rule and Experiments , 2010, IEEE Transactions on Control Systems Technology.

[45]  Y. H. Ku,et al.  Network synthesis using legendre and hermite polynomials , 1962 .

[46]  Vladimir I. Prodanov,et al.  Complex Low-Pass Filters , 2003 .

[47]  Ahmed M. Soliman,et al.  Fractional Order Butterworth Filter: Active and Passive Realizations , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[48]  Karabi Biswas,et al.  Practical Realization of Tunable Fractional Order Parallel Resonator and Fractional Order Filters , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[49]  Ivo Petráš,et al.  Tuning and implementation methods for fractional-order controllers , 2012 .

[50]  A. G. Radwan,et al.  Resonance and Quality Factor of the $RL_{\alpha} C_{\alpha}$ Fractional Circuit , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[51]  Todd J. Freeborn,et al.  Comparison of $$(1+\alpha )$$(1+α) Fractional-Order Transfer Functions to Approximate Lowpass Butterworth Magnitude Responses , 2016, Circuits Syst. Signal Process..

[52]  Giuseppe Fedele,et al.  Periodic disturbance rejection for fractional-order dynamical systems , 2015 .

[53]  L. D. Paarmann,et al.  Design and Analysis of Analog Filters: A Signal Processing Perspective , 2001 .

[54]  T. Hartley,et al.  Dynamics and Control of Initialized Fractional-Order Systems , 2002 .