Chirality and metamaterials

Electromagnetic metamaterials are artificial media that derive novel properties from periodic structuring on the sub-wavelength scale. Here, the consequences of two-dimensional (2D) and three-dimensional (3D) chirality for the electromagnetic properties of metamaterials are investigated. The focus of this work is on new ways of achieving circular conversion dichroism, optical activity and negative refraction in highly symmetric structures. In the theoretical part of this work, fundamental constraints on polarization effects in planar metamaterials are established based on symmetry and energy conservation considerations. Through the experimental study of 2D chirality, I have first observed circular conversion dichroism (i) in non-chiral structures and (ii) due to 2D-chiral arrangement of non-chiral elements. (iii) I have first seen enantiomerically sensitive reflection, yielding the experimental demonstration that circular conversion dichroism results in simultaneous directional asymmetries in transmission, reflection and absorption. In particular, a tunable transmission asymmetry of up to 21 % has been observed when extrinsic 2D chirality was associated with oblique incidence onto a non-chiral meandering wire pattern. At normal incidence circular conversion dichroism was seen for non-chiral split ring elements assembled into a 2D-chiral double-periodic array. Simultaneous directional and enantiomeric asymmetries in transmission (16 %), reflection (16 %) and absorption (32 %) were observed for normal incidence onto a double-periodic array of 2D-chiral split rings. Regarding 3D chirality, I have (i) realized the first material with a negative refractive index due to chirality and (ii) observed optical activity in the first stereometamaterial. (iii) I have discovered that optical activity can be observed in non-chiral metamaterials and (iv) I have demonstrated that optical activity in such structures is tunable and occurs in transmission and reflection. In particular polarization rotation reaching 81° and circular dichroism of up to 26 dB have been observed for non-chiral arrays of split rings, when an extrinsically 3D-chiral experimental arrangement was formed by metamaterial and direction of incidence. Based on a previously-studied meta-molecule consisting of mutually twisted metal patterns in parallel planes, microwave and photonic stereometamaterials with optical activity have been realized in this thesis and such a structure has been shown to have a negative refractive index of -1.7 for right-handed circularly polarized microwaves.

[1]  John David Jackson,et al.  Classical Electrodynamics , 2020, Nature.

[2]  U. Eigenthaler,et al.  Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. , 2010, Nano letters.

[3]  Martin Wegener,et al.  Three‐Dimensional Bi‐Chiral Photonic Crystals , 2009 .

[4]  M. Kafesaki,et al.  Chiral metamaterials: simulations and experiments , 2009 .

[5]  Nikolay I. Zheludev,et al.  Metamaterial-Induced Transparency:Sharp Fano Resonances and Slow Light , 2009 .

[6]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[7]  A. K. Azad,et al.  Terahertz metamaterial with asymmetric transmission , 2009, 0908.2524.

[8]  M. Wegener,et al.  Strong optical activity from twisted-cross photonic metamaterials. , 2009, Optics letters.

[9]  Mohan Srinivasarao,et al.  Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles , 2009, Science.

[10]  Nikolay I. Zheludev,et al.  Extrinsic electromagnetic chirality in metamaterials , 2009 .

[11]  Nikolay I. Zheludev,et al.  Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency , 2009 .

[12]  D P Tsai,et al.  Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. , 2009, Optics express.

[13]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[14]  C. Soukoulis,et al.  Nonplanar chiral metamaterials with negative index , 2009, 0907.0198.

[15]  Maria Kafesaki,et al.  Negative refractive index due to chirality , 2009, 0907.1121.

[16]  A. Novitsky,et al.  Elliptical dichroism: operating principle of planar chiral metamaterials. , 2009, Optics letters.

[17]  D. Tsai,et al.  Metamaterials: optical activity without chirality. , 2009, Physical review letters.

[18]  Igal Brener,et al.  Metamaterials for THz polarimetric devices. , 2009, Optics express.

[19]  Nikolay I. Zheludev,et al.  Metamaterial with negative index due to chirality , 2009 .

[20]  Xiang Zhang,et al.  Negative refractive index in chiral metamaterials. , 2009, Physical review letters.

[21]  F. Lederer,et al.  Coupling between a dark and a bright eigenmode in a terahertz metamaterial , 2009, 0901.0365.

[22]  N. Zheludev,et al.  Planar metamaterial with transmission and reflection that depend on the direction of incidence , 2008, 0812.0696.

[23]  Harald Giessen,et al.  Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules , 2008 .

[24]  Nikolay I. Zheludev,et al.  Coherent and incoherent metamaterials and order-disorder transitions , 2008, 0809.2361.

[25]  N I Zheludev,et al.  Nanostructured metal film with asymmetric optical transmission. , 2008, Nano letters.

[26]  Hu Tao,et al.  Planar wallpaper group metamaterials for novel terahertz applications. , 2008, Optics express.

[27]  Aurelien Drezet,et al.  Optical chirality without optical activity: How surface plasmons give a twist to light. , 2008, Optics express.

[28]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[29]  C. Soukoulis,et al.  Low-loss metamaterials based on classical electromagnetically induced transparency. , 2008, Physical review letters.

[30]  E. Plum,et al.  Optical activity in extrinsically chiral metamaterial , 2008, 0807.0523.

[31]  Xiangfeng Meng,et al.  Observation of extraordinary optical activity in planar chiral photonic crystals. , 2008, Optics express.

[32]  Remigius Zengerle,et al.  Negative index bulk metamaterial at terahertz frequencies. , 2008, Optics express.

[33]  Igal Brener,et al.  Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. , 2008, Optics express.

[34]  N. Zheludev,et al.  Metamaterial analog of electromagnetically induced transparency. , 2008, Physical review letters.

[35]  Jari Turunen,et al.  Optical activity in planar chiral metamaterials: Theoretical study , 2007 .

[36]  J. Baumberg,et al.  Nanoparticle-tuned structural color from polymer opals. , 2007, Optics express.

[37]  Nikolay I. Zheludev,et al.  Asymmetric Transmission of Light and Enantiomerically Sensitive Plasmon Resonance in Planar Chiral Nanostructures , 2007 .

[38]  Nikolay I. Zheludev,et al.  Giant optical gyrotropy due to electromagnetic coupling , 2007 .

[39]  K. Kalli Photonic Crystal Fibers , 2007 .

[40]  S. Meskers,et al.  Circular differential scattering of light in films of chiral polyfluorene. , 2007, The journal of physical chemistry. B.

[41]  N I Zheludev,et al.  Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. , 2007, Physical review letters.

[42]  M. Wegener,et al.  Circular dichroism of planar chiral magnetic metamaterials. , 2007, Optics letters.

[43]  U. Leonhardt Optical metamaterials: Invisibility cup , 2007 .

[44]  Ari Sihvola,et al.  Metamaterials in electromagnetics , 2007 .

[45]  Willie J Padilla Group theoretical description of artificial electromagnetic metamaterials. , 2007, Optics express.

[46]  Stefan Linden,et al.  Polarization Stop Bands in Chiral Polymeric Three‐Dimensional Photonic Crystals , 2007 .

[47]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[48]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[49]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[50]  N I Zheludev,et al.  Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. , 2006, Physical review letters.

[51]  N I Zheludev,et al.  Asymmetric propagation of electromagnetic waves through a planar chiral structure. , 2006, Physical review letters.

[52]  Y. Gartstein,et al.  Spatial dispersion and negative refraction of light , 2006 .

[53]  M. Wegener,et al.  Negative-index metamaterial at 780 nm wavelength. , 2006, Optics letters.

[54]  G. Shvets Optical polarizer/isolator based on a rectangular waveguide with helical grooves , 2006, physics/0606206.

[55]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[56]  M. Wegener,et al.  Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial , 2006, Science.

[57]  Ling Li,et al.  The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications , 2006, IEEE Transactions on Antennas and Propagation.

[58]  D. Stavenga,et al.  Light on the moth-eye corneal nipple array of butterflies , 2006, Proceedings of the Royal Society B: Biological Sciences.

[59]  T. Cui,et al.  Negative refractions in uniaxially anisotropic chiral media , 2006 .

[60]  Shenghua Ye,et al.  Far-infrared signature of animal tissues characterized by terahertz time-domain spectroscopy , 2006 .

[61]  Weili Zhang,et al.  Transmission properties of terahertz pulses through subwavelength double split-ring resonators. , 2006, Optics letters.

[62]  Konstantins Jefimovs,et al.  Giant optical activity in quasi-two-dimensional planar nanostructures. , 2005, Physical review letters.

[63]  E. N. Economou,et al.  Saturation of the magnetic response of split-ring resonators at optical frequencies. , 2005, Physical review letters.

[64]  D. Forester,et al.  Negative refraction and focusing of circularly polarized waves in optically active media. , 2005, Physical review letters.

[65]  S. Tretyakov,et al.  Backward-wave regime and negative refraction in chiral composites , 2005, cond-mat/0509287.

[66]  S. H. Kim,et al.  Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography , 2005 .

[67]  Sailing He,et al.  Focusing by a slab of chiral medium. , 2005, Optics express.

[68]  Kharkov,et al.  Planar electromagnetic metamaterial with a fish scale structure. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[70]  H. Moser,et al.  Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial. , 2005, Physical review letters.

[71]  Dilip K. Paul,et al.  Sculptured Thin Films: Nanoengineered Morphology and Optics , 2005 .

[72]  J. Pendry A Chiral Route to Negative Refraction , 2004, Science.

[73]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[74]  J. Bonache,et al.  Babinet principle applied to the design of metasurfaces and metamaterials. , 2004, Physical review letters.

[75]  Joel R. Wendt,et al.  InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures , 2004 .

[76]  A. Grbic,et al.  Overcoming the diffraction limit with a planar left-handed transmission-line lens. , 2004, Physical review letters.

[77]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[78]  N. Zheludev,et al.  A new model of geometric chirality for two-dimensional continuous media and planar meta-materials , 2004 .

[79]  R. Raval Chemistry: Mirrors in Flatland , 2003, Nature.

[80]  N I Zheludev,et al.  Polarization effects in the diffraction of light by a planar chiral structure. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[82]  N. Zheludev,et al.  Optical manifestations of planar chirality. , 2003, Physical review letters.

[83]  M. Meinders,et al.  Proteins at air-water interfaces studied using external reflection circular dichroism. , 2002, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[84]  S. Tretyakov,et al.  Waves and Energy in Chiral Nihility , 2002, cond-mat/0211012.

[85]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[86]  Nikolay I. Zheludev,et al.  Layered chiral metallic microstructures with inductive coupling , 2001 .

[87]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[88]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[89]  Ben A. Munk,et al.  Frequency Selective Surfaces: Theory and Design , 2000 .

[90]  A. Lakhtakia,et al.  Vacuum deposition of chiral sculptured thin films with high optical activity. , 2000, Applied optics.

[91]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[92]  Lifeng Li,et al.  New formulation of the Fourier modal method for crossed surface-relief gratings , 1997 .

[93]  D. Emerson,et al.  The work of Jagadis Chandra Bose: 100 years of mm-wave research , 1997, 1997 IEEE MTT-S International Microwave Symposium Digest.

[94]  H. Tamada,et al.  Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-microm-wavelength band. , 1997, Optics letters.

[95]  Mark P. Silverman,et al.  Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid , 1996 .

[96]  Laurence D. Barron,et al.  Rayleigh and Raman optical activity from chiral surfaces , 1994 .

[97]  A. R. Bungay,et al.  Experimental observation of specular optical activity. , 1993, Physical review letters.

[98]  A. R. Bungay,et al.  Specular optical activity in GaAs , 1993 .

[99]  M. Silverman,et al.  Chiral reflection from a naturally optically active medium. , 1992, Optics letters.

[100]  V. Varadan,et al.  Experimental characterization of isotropic chiral composites in circular waveguides , 1992 .

[101]  S. W. Lee,et al.  Tri-band frequency selective surface with circular ring elements , 1991, Antennas and Propagation Society Symposium 1991 Digest.

[102]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[103]  M. Silverman,et al.  Light reflection from a naturally optically active birefringent medium , 1990 .

[104]  N. Engheta,et al.  Chirosorb as an invisible medium , 1989 .

[105]  Mark P. Silverman,et al.  Experimental configurations using optical phase modulation to measure chiral asymmetries in light specularly reflected from a naturally gyrotropic medium , 1988 .

[106]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[107]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[108]  P N Scharbach,et al.  A Dynamical Theory of the Electromagnetic Field , 1983 .

[109]  K D Möller,et al.  Far-infrared bandpass filters from cross-shaped grids. , 1981, Applied optics.

[110]  V. Gvozdev,et al.  Peculiar waves in naturally gyrotropic media , 1981 .

[111]  L. Whitehead,et al.  Split-ring resonator for use in magnetic resonance from 200-2000 MHz , 1981 .

[112]  D. Schattschneider The Plane Symmetry Groups: Their Recognition and Notation , 1978 .

[113]  B. A. Munk,et al.  Reflection properties of periodic surfaces of loaded dipoles , 1971 .

[114]  Chao-Chun Chen,et al.  Scattering by a two-dimensional periodic array of conducting plates , 1970 .

[115]  Richard Williams Optical‐Rotatory Power and Linear Electro‐optic Effect in Nematic Liquid Crystals of p‐Azoxyanisole , 1969 .

[116]  Richard Williams,et al.  Optical Rotatory Effect in the Nematic Liquid Phase ofp-Azoxyanisole , 1968 .

[117]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[118]  R. Kouyoumjian,et al.  Scattering by a Two-Dimensional Periodic Array of Narrow Plate† , 1967 .

[119]  R. Ulrich Far-infrared properties of metallic mesh and its complementary structure , 1967 .

[120]  Ignacio Tinoco,et al.  The Optical Activity of Oriented Copper Helices. I. Experimental , 1957 .

[121]  D. Wood,et al.  ORIGIN OF SPIRAL EUTECTIC STRUCTURES , 1954 .

[122]  J. Brown,et al.  Artificial dielectrics having refractive indices less than unity , 1953 .

[123]  Nanqi Liu,et al.  Stereometamaterials , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[124]  J. Strutt Scientific Papers: On the Maintenance of Vibrations by Forces of Double Frequency, and on the Propagation of Waves through a Medium endowed with a Periodic Structure , 2009 .

[125]  木下 修一,et al.  Structural colors in the realm of nature , 2008 .

[126]  On the remarkable phenomenon of crystalline reflexion described by Prof , 2008 .

[127]  C. Soukoulis Negative index materials , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[128]  Zhang Xi,et al.  Materials for terahertz science and technology , 2003 .

[129]  Sergei A. Tretyakov,et al.  Electromagnetics of bi-anisotropic materials: Theory and applications , 2001 .

[130]  J. Kong Electromagnetic Wave Theory , 1986 .

[131]  W. Rotman Plasma simulation by artificial dielectrics and parallel-plate media , 1962 .

[132]  K. Lindman,et al.  Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarisation der elektromagnetischen Wellen , 1920 .

[133]  W. Thomson,et al.  Baltimore Lectures On Molecular Dynamics And The Wave Theory Of Light , 1904 .

[134]  Jagadis Chunder Bose,et al.  On the rotation of plane of polarisation of electric wave by a twisted structure , 1898, Proceedings of the Royal Society of London.

[135]  J. Fraunhofer Kurzer Bericht von den Resultaten neuerer Versuche über die Gesetze des Lichtes, und die Theorie derselben , 1823 .