Benefits from using mixed precision computations in the ELPA-AEO and ESSEX-II eigensolver projects
暂无分享,去创建一个
Tetsuya Sakurai | Hans-Joachim Bungartz | Gerhard Wellein | Holger Fehske | Thomas Huckle | Bruno Lang | Hermann Lederer | Kengo Nakajima | Achim Basermann | Akira Imakura | Melven Röhrig-Zöllner | Yasunori Futamura | Dominik Ernst | Faisal Shahzad | Jonas Thies | Martin Galgon | Andreas Alvermann | Moritz Kreutzer | Pavel Kus | Sarah Huber | Masatoshi Kawai | Georg Hager | Christian Carbogno | Akihiro Ida | Matthias Scheffler | Michael Rippl | Christoph Scheurer | Karsten Reuter | Simone Köcher | Valeriy Manin | Andreas Marek | Lydia Nemec | Danilo Simoes Brambila | G. Wellein | A. Alvermann | H. Fehske | H. Bungartz | T. Sakurai | B. Lang | M. Scheffler | T. Huckle | K. Reuter | G. Hager | J. Thies | A. Marek | C. Scheurer | Y. Futamura | P. Kus | K. Nakajima | S. Köcher | A. Imakura | Christian Carbogno | Akihiro Ida | A. Basermann | Martin Galgon | Michael Rippl | Melven Röhrig-Zöllner | Faisal Shahzad | L. Nemec | Dominik Ernst | Sarah Huber | Masatoshi Kawai | Moritz Kreutzer | H. Lederer | Valeriy Manin | Danilo Simoes Brambila
[1] Bruno Lang,et al. Cannon-type triangular matrix multiplication for the reduction of generalized HPD eigenproblems to standard form , 2020, Parallel Comput..
[2] Y. Saad. Numerical Methods for Large Eigenvalue Problems , 2011 .
[3] Gerhard Wellein,et al. A Unified Sparse Matrix Data Format for Efficient General Sparse Matrix-Vector Multiplication on Modern Processors with Wide SIMD Units , 2013, SIAM J. Sci. Comput..
[4] G. W. Stewart. Block Gram--Schmidt Orthogonalization , 2008, SIAM J. Sci. Comput..
[5] Matthias Scheffler,et al. Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions , 2009, J. Comput. Phys..
[6] T. Sakurai,et al. CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems , 2007 .
[7] Lukas Krämer,et al. Improving projection‐based eigensolvers via adaptive techniques , 2018, Numer. Linear Algebra Appl..
[8] A Marek,et al. The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.
[9] Carlos G. Levi,et al. Ferroelastic switching of doped zirconia: Modeling and understanding from first principles , 2014 .
[10] Mathias Jacquelin,et al. ELSI: A unified software interface for Kohn-Sham electronic structure solvers , 2017, Comput. Phys. Commun..
[11] Yusaku Yamamoto,et al. Roundoff error analysis of the Cholesky QR2 algorithm , 2015 .
[12] Eric Polizzi,et al. Krylov eigenvalue strategy using the FEAST algorithm with inexact system solves , 2017, Numer. Linear Algebra Appl..
[13] Gerhard Wellein,et al. GHOST: Building Blocks for High Performance Sparse Linear Algebra on Heterogeneous Systems , 2015, International Journal of Parallel Programming.
[14] Lukas Krämer,et al. Parallel solution of partial symmetric eigenvalue problems from electronic structure calculations , 2011, Parallel Comput..
[15] Mark Hoemmen,et al. Communication-avoiding Krylov subspace methods , 2010 .
[16] Gerhard Wellein,et al. Performance Engineering and Energy Efficiency of Building Blocks for Large, Sparse Eigenvalue Computations on Heterogeneous Supercomputers , 2016, Software for Exascale Computing.
[17] T. Sakurai,et al. A projection method for generalized eigenvalue problems using numerical integration , 2003 .
[18] Rampi Ramprasad,et al. Ab Initio Green-Kubo Approach for the Thermal Conductivity of Solids. , 2016, Physical review letters.
[19] Julien Langou,et al. Accelerating scientific computations with mixed precision algorithms , 2008, Comput. Phys. Commun..
[20] Lukas Krämer,et al. ESSEX: Equipping Sparse Solvers for Exascale , 2014, Euro-Par Workshops.
[21] Gerhard Wellein,et al. High-performance implementation of Chebyshev filter diagonalization for interior eigenvalue computations , 2015, J. Comput. Phys..
[22] Matthias Scheffler,et al. Thermodynamic equilibrium conditions of graphene films on SiC. , 2013, Physical review letters.
[23] Jack J. Dongarra,et al. Mixed-Precision Cholesky QR Factorization and Its Case Studies on Multicore CPU with Multiple GPUs , 2015, SIAM J. Sci. Comput..
[24] Eric Polizzi,et al. Krylov eigenvalue strategy using the FEAST algorithm with inexact system solves: Krylov strategy using FEAST with inexact system solves , 2018 .
[25] Fred Wubs,et al. Numerical bifurcation analysis of a 3D turing-type reaction-diffusion model , 2018, Commun. Nonlinear Sci. Numer. Simul..
[26] Tetsuya Sakurai,et al. Equipping Sparse Solvers for Exascale , 2018 .
[27] Jack J. Dongarra,et al. Mixed-Precision Orthogonalization Scheme and Adaptive Step Size for Improving the Stability and Performance of CA-GMRES on GPUs , 2014, VECPAR.
[28] Jean-Michel Muller,et al. Handbook of Floating-Point Arithmetic (2nd Ed.) , 2018 .
[29] Kesheng Wu,et al. A Block Orthogonalization Procedure with Constant Synchronization Requirements , 2000, SIAM J. Sci. Comput..
[30] Bruno Lang. Efficient Reduction of Banded Hermitian Positive Definite Generalized Eigenvalue Problems to Banded Standard Eigenvalue Problems , 2019, SIAM J. Sci. Comput..
[31] Eric Polizzi,et al. A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.
[32] Gerhard Wellein,et al. CRAFT: A Library for Easier Application-Level Checkpoint/Restart and Automatic Fault Tolerance , 2017, IEEE Transactions on Parallel and Distributed Systems.
[33] P. Schönemann,et al. A generalized solution of the orthogonal procrustes problem , 1966 .
[34] Matthias Scheffler,et al. Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..
[35] Gerhard Wellein,et al. Increasing the Performance of the Jacobi-Davidson Method by Blocking , 2015, SIAM J. Sci. Comput..
[36] Gerhard Wellein,et al. Towards an Exascale Enabled Sparse Solver Repository , 2016, Software for Exascale Computing.
[37] Matthias Krack,et al. Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. , 2007, Physical review letters.
[38] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[39] D. G. Clayton,et al. Gram‐Schmidt Orthogonalization , 1971 .
[40] James Demmel,et al. Communication-optimal Parallel and Sequential QR and LU Factorizations , 2008, SIAM J. Sci. Comput..
[41] Pieter Ghysels,et al. A Distributed-Memory Package for Dense Hierarchically Semi-Separable Matrix Computations Using Randomization , 2015, ACM Trans. Math. Softw..
[42] Lynn Elliot Cannon,et al. A cellular computer to implement the kalman filter algorithm , 1969 .