Convergence analysis and performance of an extended central force optimization algorithm

Abstract Simple central force optimization (SCFO) algorithm is a novel physically-inspired optimization algorithm as simulating annealing (SA). To enhance the global search ability of SCFO and accelerate its convergence, a novel extended/enhanced central force optimization (ECFO) algorithm is proposed through both adding the historical information and defining an adaptive mass. SCFO and ECFO are all motivated by gravitational kinematics, in which the compound gravitation impels particles to the optima. The convergence of ECFO is proved based on a more complex characteristic equation than SCFO, i.e. the second order difference equation. The stability theory of discrete-time-linear system is used to analyze the motion equations of particles. Stability conditions limit their eigenvalues inside the unit cycle in complex plane and corresponding convergence conditions are deduced related with ECFO’s parameters. Finally, ECFO are tested against a suite of benchmark functions with deterministic and excellent results. Experiments results show that ECFO converges faster than SCFO with higher global searching ability.

[1]  Stephanie Forrest,et al.  Architecture for an Artificial Immune System , 2000, Evolutionary Computation.

[2]  D. Raine General relativity , 1980, Nature.

[3]  Robert C. Green,et al.  Central force optimization on a GPU: a case study in high performance metaheuristics , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[4]  Q. Henry Wu,et al.  Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior , 2009, IEEE Transactions on Evolutionary Computation.

[5]  Cheng-Long Chuang,et al.  Integrated radiation optimization: inspired by the gravitational radiation in the curvature of space-time , 2007, 2007 IEEE Congress on Evolutionary Computation.

[6]  Richard A. Formato,et al.  Central Force Optimization with variable initial probes and adaptive decision space , 2011, Appl. Math. Comput..

[7]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[8]  Jeng-Shyang Pan,et al.  Cat swarm optimization , 2006 .

[9]  Ling Wang,et al.  Parameter analysis based on stochastic model for differential evolution algorithm , 2010, Appl. Math. Comput..

[10]  Robert C. Green,et al.  Training neural networks using Central Force Optimization and Particle Swarm Optimization: Insights and comparisons , 2012, Expert Syst. Appl..

[11]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[12]  Hsing-Chih Tsai,et al.  Modification of the fish swarm algorithm with particle swarm optimization formulation and communication behavior , 2011, Appl. Soft Comput..

[13]  Ke Chen,et al.  Applied Mathematics and Computation , 2022 .

[14]  Richard Formato,et al.  Central Force Optimization: A New Nature Inspired Computational Framework for Multidimensional Search and Optimization , 2007, NICSO.

[15]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[16]  Xiaoping Luo,et al.  A Convergence Proof and Parameter Analysis of Central Force , 2011 .

[17]  Sam Kwong,et al.  Genetic algorithms and their applications , 1996, IEEE Signal Process. Mag..

[18]  Richard A. Formato,et al.  Central force optimization: A new deterministic gradient-like optimization metaheuristic , 2009 .

[19]  Carlos Cotta,et al.  Memetic algorithms and memetic computing optimization: A literature review , 2012, Swarm Evol. Comput..

[20]  Hüseyin Yılmaz Introduction to the theory of relativity and the principles of modern physics , 1965 .

[21]  Shiyuan Yang,et al.  Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm , 2007, Inf. Process. Lett..

[22]  Helena M. Ramos,et al.  Detection of Leakage Freshwater and Friction Factor Calibration in Drinking Networks Using Central Force Optimization , 2012, Water Resources Management.

[23]  Richard A. Formato Comparative Results: Group Search Optimizer and Central Force Optimization , 2010, ArXiv.

[24]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[25]  Guoqiang Li,et al.  Development and investigation of efficient artificial bee colony algorithm for numerical function optimization , 2012, Appl. Soft Comput..

[26]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[27]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[28]  Shu-Cherng Fang,et al.  An Electromagnetism-like Mechanism for Global Optimization , 2003, J. Glob. Optim..

[29]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[30]  João Pedro Hespanha,et al.  Linear Systems Theory , 2009 .

[31]  Muzaffar Eusuff,et al.  Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization , 2006 .

[32]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[33]  Richard A. Formato,et al.  Central force optimisation: a new gradient-like metaheuristic for multidimensional search and optimisation , 2009, Int. J. Bio Inspired Comput..

[34]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[35]  Richard A. Formato,et al.  CENTRAL FORCE OPTIMIZATION: A NEW META-HEURISTIC WITH APPLICATIONS IN APPLIED ELECTROMAGNETICS , 2007 .

[36]  Jie Chen,et al.  Optimal Contraction Theorem for Exploration–Exploitation Tradeoff in Search and Optimization , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[37]  Donald E. Grierson,et al.  Comparison among five evolutionary-based optimization algorithms , 2005, Adv. Eng. Informatics.

[38]  Richard A. Formato Dynamic Threshold Optimization - A New Approach? , 2012, ArXiv.

[39]  Liping Xie,et al.  Convergence analysis and performance of the extended artificial physics optimization algorithm , 2011, Appl. Math. Comput..

[40]  Ying-Tung Hsiao,et al.  A novel optimization algorithm: space gravitational optimization , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[41]  Richard A. Formato,et al.  Parameter-Free Deterministic Global Search with Central Force Optimization , 2010, ArXiv.

[42]  Nihad Dib,et al.  Antenna benchmark performance and array synthesis using central force optimisation , 2010 .