Integrated computational guide design, execution, and analysis of arrayed and pooled CRISPR genome editing experiments

CRISPR genome editing experiments offer enormous potential for evaluation of genomic loci using arrayed or pooled lentiviral libraries of single guide RNAs (sgRNAs). Numerous computational tools are available to help design sgRNAs with optimal on-target efficiency and minimal off-target effects. In addition, a few computational tools have been developed to analyze data resulting from genome editing experiments. However, these tools are typically developed in isolation and oftentimes are not readily translatable into laboratory-based experiments. Here we present a protocol that describes in detail both the computational and the benchtop implementation of an arrayed and/or pooled CRISPR genome editing experiment. This protocol provides instructions for sgRNA design with CRISPOR, experimental implementation, and analysis of the resulting high-throughput sequencing data with CRISPResso.

[1]  P. Hsu,et al.  Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity. , 2016, Molecular cell.

[2]  Erik L. G. Wernersson,et al.  BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks , 2017, Nature Communications.

[3]  Feng Zhang,et al.  Engineered Cpf1 variants with altered PAM specificities increase genome targeting range , 2017, Nature Biotechnology.

[4]  Feng Zhang,et al.  Genome engineering using CRISPR-Cas9 system. , 2015, Methods in molecular biology.

[5]  John G Doench,et al.  In Silico Predictive Modeling of CRISPR/Cas9 guide efficiency , 2015, bioRxiv.

[6]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[7]  Eunji Kim,et al.  In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni , 2017, Nature Communications.

[8]  B. Meyer,et al.  Dramatic Enhancement of Genome Editing by CRISPR/Cas9 Through Improved Guide RNA Design , 2015, Genetics.

[9]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[10]  Jin-Soo Kim,et al.  Cas-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cas9 , 2016, Bioinform..

[11]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[12]  L. Zhu,et al.  CRISPRseek: A Bioconductor Package to Identify Target-Specific Guide RNAs for CRISPR-Cas9 Genome-Editing Systems , 2014, PloS one.

[13]  Daniel Gaston,et al.  CRISPR MultiTargeter: A Web Tool to Find Common and Unique CRISPR Single Guide RNA Targets in a Set of Similar Sequences , 2015, PloS one.

[14]  Yuri Pritykin,et al.  GuideScan software for improved single and paired CRISPR guide RNA design , 2017, Nature Biotechnology.

[15]  Timothy L. Bailey,et al.  GT-Scan: identifying unique genomic targets , 2014, Bioinform..

[16]  Clifford A. Meyer,et al.  Sequence determinants of improved CRISPR sgRNA design , 2015, Genome research.

[17]  B. Menten,et al.  BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment , 2016, Scientific Reports.

[18]  J. Joung,et al.  High-fidelity CRISPR-Cas9 variants with undetectable genome-wide off-targets , 2015, Nature.

[19]  Shiyou Zhu,et al.  High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells , 2014, Nature.

[20]  Mazhar Adli,et al.  Cas9-chromatin binding information enables more accurate CRISPR off-target prediction , 2015, Nucleic acids research.

[21]  Jin-Soo Kim,et al.  Cas-analyzer: an online tool for assessing genome editing results using NGS data , 2016, Bioinform..

[22]  Marketa Zvelebil,et al.  High-throughput RNA interference screening using pooled shRNA libraries and next generation sequencing , 2011, Genome Biology.

[23]  Richard L. Frock,et al.  Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases , 2014, Nature Biotechnology.

[24]  Kornel Labun,et al.  CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering , 2016, Nucleic Acids Res..

[25]  N. Perrimon,et al.  Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi , 2015, Science Signaling.

[26]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[27]  Alexandro E. Trevino,et al.  Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex , 2014, Nature.

[28]  Jeongbin Park,et al.  Digenome-seq web tool for profiling CRISPR specificity , 2017, Nature Methods.

[29]  Matthew C. Canver,et al.  BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis , 2015, Nature.

[30]  C. Rubinstein,et al.  Highly Specific and Efficient CRISPR/Cas9-Catalyzed Homology-Directed Repair in Drosophila , 2014, Genetics.

[31]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[32]  M. Boutros,et al.  E-CRISP: fast CRISPR target site identification , 2014, Nature Methods.

[33]  Neville E Sanjana,et al.  Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening , 2016, Nature Protocols.

[34]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[35]  Neville E. Sanjana,et al.  High-resolution interrogation of functional elements in the noncoding genome , 2016, Science.

[36]  David A. Scott,et al.  In vivo genome editing using Staphylococcus aureus Cas9 , 2015, Nature.

[37]  Max A. Horlbeck,et al.  Nucleosomes impede Cas9 access to DNA in vivo and in vitro , 2016, eLife.

[38]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[39]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[40]  Max A. Horlbeck,et al.  Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation , 2014, Cell.

[41]  Bo Zhang,et al.  CasOT: a genome-wide Cas9/gRNA off-target searching tool , 2014, Bioinform..

[42]  James E. Hall,et al.  Transformation of plasmid DNA into E. coli using the heat shock method. , 2007, Journal of visualized experiments : JoVE.

[43]  Matthew C. Canver,et al.  Functional interrogation of non-coding DNA through CRISPR genome editing. , 2017, Methods.

[44]  George M. Church,et al.  CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing , 2014, Nucleic Acids Res..

[45]  Prashant Mali,et al.  Orthogonal Cas9 Proteins for RNA-Guided Gene Regulation and Editing , 2013, Nature Methods.

[46]  J. Kinney,et al.  Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains , 2015, Nature Biotechnology.

[47]  Charles E. Vejnar,et al.  CRISPRscan: designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo , 2015, Nature Methods.

[48]  A. Regev,et al.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System , 2015, Cell.

[49]  Matthew C. Canver,et al.  Analyzing CRISPR genome-editing experiments with CRISPResso , 2016, Nature Biotechnology.

[50]  J. Joung,et al.  CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets , 2017, Nature Methods.

[51]  Matthew C. Canver,et al.  Characterization of genomic deletion efficiency mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. , 2017, The Journal of Biological Chemistry.

[52]  Zheng Wei,et al.  CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation , 2015, Bioinform..

[53]  Yang Lei,et al.  CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. , 2014, Molecular plant.

[54]  M. Delbrück,et al.  THE GROWTH OF BACTERIOPHAGE , 1939, The Journal of general physiology.

[55]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[56]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[57]  Jong-il Kim,et al.  Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells , 2015, Nature Methods.

[58]  George M. Church,et al.  Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA) , 2014, Bioinform..

[59]  L. Levin,et al.  Biodiversity on the Rocks: Macrofauna Inhabiting Authigenic Carbonate at Costa Rica Methane Seeps , 2015, PloS one.

[60]  Yilong Li,et al.  Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library , 2013, Nature Biotechnology.

[61]  Yarden Katz,et al.  Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system , 2013, Cell Research.

[62]  Xingxu Huang,et al.  sgRNAcas9: A Software Package for Designing CRISPR sgRNA and Evaluating Potential Off-Target Cleavage Sites , 2014, PloS one.

[63]  Max A. Horlbeck,et al.  Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation , 2016, eLife.

[64]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[65]  Hidemasa Bono,et al.  CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites , 2014, Bioinform..

[66]  Yanhui Hu,et al.  Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. , 2014, Cell reports.

[67]  Gene W. Yeo,et al.  L1 retrotransposition in human neural progenitor cells , 2009, Nature.

[68]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[69]  David A. Williams,et al.  Unexpected help: mTOR meets lentiviral vectors. , 2014, Blood.

[70]  Wei Li,et al.  CRISPR-DO for genome-wide CRISPR design and optimization , 2016, Bioinform..

[71]  Meagan E. Sullender,et al.  Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 , 2015, Nature Biotechnology.

[72]  Martin J. Aryee,et al.  Engineered CRISPR-Cas9 nucleases with altered PAM specificities , 2015, Nature.

[73]  J. Joung,et al.  Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition , 2015, Nature Biotechnology.

[74]  David A. Scott,et al.  Rationally engineered Cas9 nucleases with improved specificity , 2015, Science.

[75]  M. Robinson,et al.  CrispRVariants charts the mutation spectrum of genome engineering experiments , 2016, Nature Biotechnology.

[76]  Matthew C. Canver,et al.  Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci , 2017, Nature Genetics.

[77]  M. Jinek,et al.  Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease , 2014, Nature.

[78]  G. Stent Molecular Biology of Bacterial Viruses , 1963 .

[79]  Leslie S. Edwards,et al.  Mapping the genomic landscape of CRISPR–Cas9 cleavage , 2017, Nature Methods.

[80]  Martin J. Aryee,et al.  GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases , 2014, Nature Biotechnology.

[81]  C. Gersbach,et al.  Engineering Delivery Vehicles for Genome Editing. , 2016, Annual review of chemical and biomolecular engineering.

[82]  Peng Qiu,et al.  COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites , 2014, Molecular therapy. Nucleic acids.

[83]  Meagan E. Sullender,et al.  Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation , 2014, Nature Biotechnology.

[84]  Neville E. Sanjana,et al.  Improved vectors and genome-wide libraries for CRISPR screening , 2014, Nature Methods.

[85]  Xiaowei Wang,et al.  WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system , 2015, Genome Biology.

[86]  G. Church,et al.  Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach , 2015, Nature Methods.

[87]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[88]  Sangsu Bae,et al.  Microhomology-based choice of Cas9 nuclease target sites , 2014, Nature Methods.

[89]  Jin-Soo Kim,et al.  Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases , 2014, Bioinform..

[90]  Chung-Jui Tsai,et al.  AGEseq: Analysis of Genome Editing by Sequencing. , 2015, Molecular plant.

[91]  J. Kent,et al.  Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR , 2016, Genome Biology.