Some remarks on quantized Lie superalgebras of classical type

[1]  Nathan Geer,et al.  MULTIVARIABLE LINK INVARIANTS ARISING FROM LIE SUPERALGEBRAS OF TYPE I , 2006, math/0609034.

[2]  M. D. Gould,et al.  Quasi-Hopf $*$-Algebras , 2006, math/0604520.

[3]  Nathan Geer,et al.  Multivariable link invariants arising from sl(2|1) and the Alexander polynomial , 2006, math/0601291.

[4]  Nathan Geer Etingof–Kazhdan quantization of Lie superbialgebras , 2004, math/0409563.

[5]  Yucai Su,et al.  Cohomology of Lie superalgebras 𝔰𝔩m|n and 𝔬𝔰𝔭2|2n , 2004, math/0402419.

[6]  Rui-bin Zhang Quantum enveloping superalgebras and link invariants , 2002 .

[7]  Music Musi Georgia Institute of Technology , 2002 .

[8]  M. Scheunert,et al.  Cohomology of Lie superalgebras and their generalizations , 1997, q-alg/9701037.

[9]  P. Etingof,et al.  Quantization of Lie bialgebras, II , 1996, math/9801043.

[10]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[11]  S. Khoroshkin,et al.  Twisting of quantum (super)algebras. Connection of Drinfeld's and Cartan-Weyl realizations for quantum affine algebras , 1994, hep-th/9404036.

[12]  H. Yamane Quantized Enveloping Algebras Associated with Simple Lie Superalgebras and Their Universal R -matrices , 1994 .

[13]  V. Tolstoy,et al.  Twisting of quantum (super)algebras , 1994 .

[14]  N. Andruskiewitsch Lie superbialgebras and poisson-lie supergroups , 1993 .

[15]  N. Reshetikhin Quantization of Lie bialgebras , 1992 .

[16]  V. Drinfeld On some unsolved problems in quantum group theory , 1992 .

[17]  V. Tolstoy,et al.  UniversalR-matrix for quantized (super)algebras , 1991 .

[18]  L. Vinet,et al.  On the defining relations of quantum superalgebras , 1991 .

[19]  A. Bracken,et al.  LIE BI-SUPERALGEBRAS AND THE GRADED CLASSICAL YANG-BAXTER EQUATION , 1991 .

[20]  D. Leites,et al.  Solutions of the classical Yang-Baxter equation for simple superalgebras , 1984 .