Some remarks on quantized Lie superalgebras of classical type
暂无分享,去创建一个
[1] Nathan Geer,et al. MULTIVARIABLE LINK INVARIANTS ARISING FROM LIE SUPERALGEBRAS OF TYPE I , 2006, math/0609034.
[2] M. D. Gould,et al. Quasi-Hopf $*$-Algebras , 2006, math/0604520.
[3] Nathan Geer,et al. Multivariable link invariants arising from sl(2|1) and the Alexander polynomial , 2006, math/0601291.
[4] Nathan Geer. Etingof–Kazhdan quantization of Lie superbialgebras , 2004, math/0409563.
[5] Yucai Su,et al. Cohomology of Lie superalgebras 𝔰𝔩m|n and 𝔬𝔰𝔭2|2n , 2004, math/0402419.
[6] Rui-bin Zhang. Quantum enveloping superalgebras and link invariants , 2002 .
[7] Music Musi. Georgia Institute of Technology , 2002 .
[8] M. Scheunert,et al. Cohomology of Lie superalgebras and their generalizations , 1997, q-alg/9701037.
[9] P. Etingof,et al. Quantization of Lie bialgebras, II , 1996, math/9801043.
[10] N. Reshetikhin,et al. Quantum Groups , 1993, hep-th/9311069.
[11] S. Khoroshkin,et al. Twisting of quantum (super)algebras. Connection of Drinfeld's and Cartan-Weyl realizations for quantum affine algebras , 1994, hep-th/9404036.
[12] H. Yamane. Quantized Enveloping Algebras Associated with Simple Lie Superalgebras and Their Universal R -matrices , 1994 .
[13] V. Tolstoy,et al. Twisting of quantum (super)algebras , 1994 .
[14] N. Andruskiewitsch. Lie superbialgebras and poisson-lie supergroups , 1993 .
[15] N. Reshetikhin. Quantization of Lie bialgebras , 1992 .
[16] V. Drinfeld. On some unsolved problems in quantum group theory , 1992 .
[17] V. Tolstoy,et al. UniversalR-matrix for quantized (super)algebras , 1991 .
[18] L. Vinet,et al. On the defining relations of quantum superalgebras , 1991 .
[19] A. Bracken,et al. LIE BI-SUPERALGEBRAS AND THE GRADED CLASSICAL YANG-BAXTER EQUATION , 1991 .
[20] D. Leites,et al. Solutions of the classical Yang-Baxter equation for simple superalgebras , 1984 .