Segmented Terahertz Electron Accelerator and Manipulator (STEAM)

Acceleration and manipulation of electron bunches underlie most electron and X-ray devices used for ultrafast imaging and spectroscopy. New terahertz-driven concepts offer orders-of-magnitude improvements in field strengths, field gradients, laser synchronization and compactness relative to conventional radiofrequency devices, enabling shorter electron bunches and higher resolution with less infrastructure while maintaining high charge capacities (pC), repetition rates (kHz) and stability. We present a segmented terahertz electron accelerator and manipulator (STEAM) capable of performing multiple high-field operations on the six-dimensional phase space of ultrashort electron bunches. With this single device, powered by few-microjoule, single-cycle, 0.3 THz pulses, we demonstrate record terahertz acceleration of >30 keV, streaking with <10 fs resolution, focusing with >2 kT m–1 strength, compression to ~100 fs as well as real-time switching between these modes of operation. The STEAM device demonstrates the feasibility of terahertz-based electron accelerators, manipulators and diagnostic tools, enabling science beyond current resolution frontiers with transformative impact.By sending few-microjoule single-cycle terahertz pulses to a segmented terahertz electron accelerator and manipulator, 70 MV m–1 peak acceleration fields, 2 kT m–1 focusing gradients, 140 µrad fs–1 streaking gradient and bunch compression to 100 fs are achieved.

[1]  David Alesini,et al.  Direct Measurement of Sub-10 fs Relativistic Electron Beams with Ultralow Emittance. , 2016, Physical review letters.

[2]  Erik Lefebvre,et al.  Principles and applications of compact laser–plasma accelerators , 2008 .

[3]  W. A. Wenzel,et al.  Some Considerations Concerning the Transverse Deflection of Charged Particles in Radio-Frequency Fields , 1956 .

[4]  R. R. Cooney,et al.  Full characterization of RF compressed femtosecond electron pulses using ponderomotive scattering. , 2012, Optics express.

[5]  K. Nakamura,et al.  Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams. , 2015, Physical review letters.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Arya Fallahi,et al.  Short Electron Bunch Generation Using Single-Cycle Ultrafast Electron Guns , 2016, 1606.02153.

[8]  S. Jamison,et al.  Demonstration of sub-luminal propagation of single-cycle terahertz pulses for particle acceleration , 2016, Nature Communications.

[9]  W. D. Kilpatrick,et al.  Criterion for Vacuum Sparking Designed to Include Both rf and dc , 1957 .

[10]  J. Maxson,et al.  Meter-Scale Terahertz-Driven Acceleration of a Relativistic Beam. , 2017, Physical review letters.

[11]  P. Hommelhoff,et al.  Laser-based acceleration of nonrelativistic electrons at a dielectric structure. , 2013, Physical review letters.

[12]  V. Paramonov,et al.  Beam dynamics in transverse deflecting rf structures , 2014 .

[13]  D. Burke,et al.  High Gradient Performance of NLC/GLC X-Band Accelerating Structures , 2005, Proceedings of the 2005 Particle Accelerator Conference.

[14]  C. Clarke,et al.  Experimental measurements of rf breakdowns and deflecting gradients in mm-wave metallic accelerating structures , 2016 .

[15]  F. Kärtner,et al.  Toward a terahertz-driven electron gun , 2014, Scientific Reports.

[16]  M. Mechler,et al.  Optical Manipulation of Relativistic Electron Beams using THz Pulses , 2011, 1109.6852.

[17]  Franz X Kärtner,et al.  High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. , 2013, Optics letters.

[18]  K. Y. Kim,et al.  MeV electron acceleration at 1  kHz with <10  mJ laser pulses. , 2016, Optics letters.

[19]  K. Krushelnick,et al.  High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp , 2012, 1204.6414.

[20]  F. Krausz,et al.  Efficient generation of THz pulses with 0.4 mJ energy , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[21]  J. Kuhl,et al.  Velocity matching by pulse front tilting for large area THz-pulse generation. , 2002, Optics express.

[22]  Canada.,et al.  Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range , 2007, physics/0702018.

[23]  F. Krausz,et al.  Sub-phonon-period compression of electron pulses for atomic diffraction , 2015, Nature Communications.

[24]  Matthias Felber,et al.  Mapping atomic motions with ultrabright electrons: towards fundamental limits in space-time resolution. , 2015, Faraday discussions.

[25]  D. Alesini,et al.  Demonstration of Single-Shot Picosecond Time-Resolved MeV Electron Imaging Using a Compact Permanent Magnet Quadrupole Based Lens. , 2016, Physical review letters.

[26]  F. Kärtner,et al.  High-energy kHz Yb:KYW dual-crystal regenerative amplifier. , 2014, Optics express.

[27]  F. Kärtner,et al.  Addressing Spectral Narrowing in Cryogenic Yb:YAG: a 10 mJ Cryogenic Yb:YLF Regenerative Amplifier , 2016 .

[28]  F. Kärtner,et al.  Field-based DGTD/PIC technique for general and stable simulation of interaction between light and electron bunches , 2014 .

[29]  Rasmus Ischebeck,et al.  Transverse profile imager for ultrabright electron beams , 2015 .

[30]  Franz X. Kärtner,et al.  THz cavities and injectors for compact electron acceleration using laser-driven THz sources , 2017 .

[31]  Robert R. Jones,et al.  High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses , 2016, Nature Communications.

[32]  J. Maxson,et al.  Meter-Scale Terahertz-Driven Acceleration of a Relativistic Beam. , 2018, Physical review letters.

[33]  J. Maxson,et al.  Dielectric laser acceleration and focusing using short-pulse lasers with an arbitrary laser phase distribution - presentation slides , 2016 .

[34]  Emilio A. Nanni,et al.  Terahertz-driven, all-optical electron gun , 2016 .

[35]  T. Higo,et al.  APS : High-gradient breakdown studies of an X -band Compact Linear Collider prototype structure , 2017 .

[36]  Eric Esarey,et al.  Laser-driven plasma-wave electron accelerators , 2009 .

[37]  H M Milchberg,et al.  MeV electron acceleration at 1  kHz with <10  mJ laser pulses. , 2017, Optics letters.

[38]  Split ring resonator based THz-driven electron streak camera featuring femtosecond resolution , 2014, Scientific reports.

[39]  F. Krausz,et al.  All-optical control and metrology of electron pulses , 2016, Science.

[40]  Germán Sciaini,et al.  Femtosecond electron diffraction: heralding the era of atomically resolved dynamics , 2011 .

[41]  Hayun Chung,et al.  10-fs-level synchronization of photocathode laser with RF-oscillator for ultrafast electron and X-ray sources , 2017, Scientific Reports.

[42]  G. Travish,et al.  Demonstration of electron acceleration in a laser-driven dielectric microstructure , 2013, Nature.

[43]  A. Jullien,et al.  Relativistic electron beams driven by kHz single-cycle light pulses , 2016, Nature Photonics.

[44]  D. Solli,et al.  Terahertz control of nanotip photoemission , 2014, Nature Physics.

[45]  Emilio A. Nanni,et al.  Terahertz-driven linear electron acceleration , 2014, Nature Communications.