Präskriptive Entscheidungsunterstützung für wissensintensive Geschäftsprozesse

ZusammenfassungDie Unterstützung wissensintensiver Geschäftsprozesse gewinnt in Unternehmen eine zunehmende Bedeutung. Wissensintensive Prozesse sind daten- und zielgetrieben, oft schwach strukturiert und in ihrer Ausführung von Fall zu Fall individuell. Sie unterscheiden sich dadurch von stark strukturierten, stets wiederholbaren Routineprozessen. In Abhängigkeit von Prognosen und aktuellen Kontextinformationen muss der Wissensarbeiter (engl. Knowledge Worker) über Folgeaktivitäten und/oder die Art der Durchführung einzelner Aktivitäten entscheiden. Dabei kann er durch Verfahren unterstützt werden, die auf präskriptiver Analytik (engl. Prescriptive Analytics) basieren. Diese ermitteln aus Vorhersagen und aktuellen Kontextinformationen geeignete Handlungsempfehlungen. In diesem Beitrag werden präskriptive Verfahren vorgestellt, die unter Heranziehung von linearen Optimierungsmodellen und Einflussdiagrammen (engl. Influence Diagrams, Decision Networks) optimierte Handlungsempfehlungen für Entscheidungssituationen im Kontext wissensintensiver Geschäftsprozesse ermöglichen.AbstractThe support of knowledge-intensive business processes is gaining increasing relevance in the industry. This type of processes is data and goal driven, weakly structured and almost not exactly repeatable. By this, knowledge-intensive processes are distinguished from well structured, repeatable routine processes. In knowledge-intensive business processes, knowledge workers have to decide on next-step activities as well as on execution details of the current task, depending on forecasts and current context information. In this article, we show how decision making in knowledge-intensive business processes can be supported by methods based on prescriptive analytics. By using linear optimization models and influence diagrams (decision networks) these methods provide optimized recommendations for knowledge worker’s decisions.

[1]  Claudio Di Ciccio,et al.  Knowledge-Intensive Processes: Characteristics, Requirements and Analysis of Contemporary Approaches , 2015, Journal on Data Semantics.

[2]  Mor Peleg,et al.  Improving business process decision making based on past experience , 2014, Decis. Support Syst..

[3]  Manfred Reichert,et al.  Process-Aware Task Management Support for Knowledge-Intensive Business Processes: Findings, Challenges, Requirements , 2014, 2014 IEEE 18th International Enterprise Distributed Object Computing Conference Workshops and Demonstrations.

[4]  Irene Barba,et al.  Supporting the Optimized Execution of Business Processes through Recommendations , 2011, Business Process Management Workshops.

[5]  Dagmar Auer,et al.  Knowledge-intensive Business Processes - A Case Study for Disease Management in Farming , 2014, ERP Future.

[6]  Peter Loos,et al.  Prescriptive Control of Business Processes , 2015, Business & Information Systems Engineering.

[7]  Andreas Koop,et al.  Lineare Optimierung – eine anwendungsorientierte Einführung in Operations Research , 2018 .

[8]  Wolfgang Domschke,et al.  Einführung in Operations Research , 1990 .

[9]  Thomas Neumuth,et al.  Application fields for the new Object Management Group (OMG) Standards Case Management Model and Notation (CMMN) and Decision Management Notation (DMN) in the perioperative field , 2017, International Journal of Computer Assisted Radiology and Surgery.

[10]  Jakob Freund,et al.  Praxishandbuch BPMN 2.0 , 2010 .

[11]  Ramesh Sharda,et al.  Business Intelligence and Analytics , 2015 .

[12]  Peter Loos,et al.  Towards Process-Oriented Recommender Capabilities in Flexible Process Environments--State of the Art , 2012, 2012 45th Hawaii International Conference on System Sciences.

[13]  T. Davenport Thinking for a living : how to get better performance and results from knowledge workers , 2005 .

[14]  R. Buck-Emden,et al.  Systemunterstützung für wissensintensive Geschäftsprozesse – Konzepte und Implementierungsansätze , 2017 .

[15]  Bernhard Mitschang,et al.  Prescriptive Analytics for Recommendation-Based Business Process Optimization , 2014, BIS.

[16]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[17]  Boudewijn F. van Dongen,et al.  Supporting Flexible Processes through Recommendations Based on History , 2008, BPM.

[18]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[19]  Richard Hull,et al.  Declarative business artifact centric modeling of decision and knowledge intensive business processes , 2011, 2011 IEEE 15th International Enterprise Distributed Object Computing Conference.

[20]  Frederick S. Hillier,et al.  Introduction of Operations Research , 1967 .

[21]  Balaram Das,et al.  Generating Conditional Probabilities for Bayesian Networks: Easing the Knowledge Acquisition Problem , 2004, ArXiv.

[22]  Ulrich Stache,et al.  Operations Research: Quantitative Methoden zur Entscheidungsvorbereitung , 2001 .

[23]  Irene Barba,et al.  User recommendations for the optimized execution of business processes , 2013, Data Knowl. Eng..

[24]  Hajo A. Reijers,et al.  The Case Handling Case , 2003, Int. J. Cooperative Inf. Syst..