A POSTERIORI ERROR ESTIMATION FOR PARABOLIC PROBLEMS USING ELLIPTIC RECONSTRUCTIONS. I: BACKWARD-EULER AND CRANK-NICOLSON METHODS∗

A semilinear second-order parabolic equation is considered in a regular and a singularly-perturbed regime. For this equation, we give computable a posteriori error estimates in the maximum norm. Fully discrete Bakward-Euler and Crank-Nicolson methods are addressed, for which we employ elliptic reconstructions that are, respectively, piecewise-constant and piecewiselinear in time. We also use certain bounds for the Green’s function of the parabolic operator.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  V. S. Vladimirov,et al.  Equations of mathematical physics , 1972 .

[3]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .

[4]  Ricardo H. Nochetto,et al.  Pointwise a posteriori error estimates for monotone semi-linear equations , 2006, Numerische Mathematik.

[5]  Omar Lakkis,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[6]  E. Davies,et al.  Non‐Gaussian Aspects of Heat Kernel Behaviour , 1997 .

[7]  Ricardo H. Nochetto,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[8]  Natalia Kopteva,et al.  Maximum Norm A Posteriori Error Estimation for Parabolic Problems Using Elliptic Reconstructions , 2013, SIAM J. Numer. Anal..

[9]  Ricardo H. Nochetto,et al.  A posteriori error estimates for the Crank-Nicolson method for parabolic equations , 2005, Math. Comput..

[10]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[11]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[12]  Alan Demlow,et al.  A Posteriori Error Estimates in the Maximum Norm for Parabolic Problems , 2007, SIAM J. Numer. Anal..

[13]  Torsten Linss,et al.  Layer-adapted meshes for reaction-convection-diffusion problems , 2010 .

[14]  Natalia Kopteva Maximum norm a posteriori error estimates for a 1D singularly perturbed semilinear reaction–diffusion problem , 2006 .

[15]  T. Linss,et al.  Maximum-norm error analysis of a non-monotone FEM for a singularly perturbed reaction-diffusion problem , 2007 .