A POSTERIORI ERROR ESTIMATION FOR PARABOLIC PROBLEMS USING ELLIPTIC RECONSTRUCTIONS. I: BACKWARD-EULER AND CRANK-NICOLSON METHODS∗
暂无分享,去创建一个
[1] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[2] V. S. Vladimirov,et al. Equations of mathematical physics , 1972 .
[3] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .
[4] Ricardo H. Nochetto,et al. Pointwise a posteriori error estimates for monotone semi-linear equations , 2006, Numerische Mathematik.
[5] Omar Lakkis,et al. Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..
[6] E. Davies,et al. Non‐Gaussian Aspects of Heat Kernel Behaviour , 1997 .
[7] Ricardo H. Nochetto,et al. Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..
[8] Natalia Kopteva,et al. Maximum Norm A Posteriori Error Estimation for Parabolic Problems Using Elliptic Reconstructions , 2013, SIAM J. Numer. Anal..
[9] Ricardo H. Nochetto,et al. A posteriori error estimates for the Crank-Nicolson method for parabolic equations , 2005, Math. Comput..
[10] A. Friedman. Partial Differential Equations of Parabolic Type , 1983 .
[11] M. Stynes,et al. Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .
[12] Alan Demlow,et al. A Posteriori Error Estimates in the Maximum Norm for Parabolic Problems , 2007, SIAM J. Numer. Anal..
[13] Torsten Linss,et al. Layer-adapted meshes for reaction-convection-diffusion problems , 2010 .
[14] Natalia Kopteva. Maximum norm a posteriori error estimates for a 1D singularly perturbed semilinear reaction–diffusion problem , 2006 .
[15] T. Linss,et al. Maximum-norm error analysis of a non-monotone FEM for a singularly perturbed reaction-diffusion problem , 2007 .