Locally dynamic synaptic learning rules in pyramidal neuron dendrites

Long-term potentiation (LTP) of synaptic transmission underlies aspects of learning and memory. LTP is input-specific at the level of individual synapses, but neural network models predict interactions between plasticity at nearby synapses. Here we show in mouse hippocampal pyramidal cells that LTP at individual synapses reduces the threshold for potentiation at neighbouring synapses. After input-specific LTP induction by two-photon glutamate uncaging or by synaptic stimulation, subthreshold stimuli, which by themselves were too weak to trigger LTP, caused robust LTP and spine enlargement at neighbouring spines. Furthermore, LTP induction broadened the presynaptic–postsynaptic spike interval for spike-timing-dependent LTP within a dendritic neighbourhood. The reduction in the threshold for LTP induction lasted ∼10 min and spread over ∼10 µm of dendrite. These local interactions between neighbouring synapses support clustered plasticity models of memory storage and could allow for the binding of behaviourally linked information on the same dendritic branch.

[1]  M. Mehta Cooperative LTP can map memory sequences on dendritic branches , 2004, Trends in Neurosciences.

[2]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[3]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[4]  Mark F. Bear,et al.  Heterosynaptic metaplasticity in the hippocampus in vivo: A BCM-like modifiable threshold for LTP , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[5]  S. Royer,et al.  Conservation of total synaptic weight through balanced synaptic depression and potentiation , 2003, Nature.

[6]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[7]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[8]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[9]  E. Kandel,et al.  Synapse-Specific, Long-Term Facilitation of Aplysia Sensory to Motor Synapses: A Function for Local Protein Synthesis in Memory Storage , 1997, Cell.

[10]  S. Tonegawa,et al.  A clustered plasticity model of long-term memory engrams , 2006, Nature Reviews Neuroscience.

[11]  E M Callaway,et al.  Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  K. Svoboda,et al.  Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience , 2006, Neuron.

[13]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[14]  G. Shepherd,et al.  Transient and Persistent Dendritic Spines in the Neocortex In Vivo , 2005, Neuron.

[15]  Karel Svoboda,et al.  Rapid Redistribution of Synaptic PSD-95 in the Neocortex In Vivo , 2006, PLoS biology.

[16]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[17]  M. Poo,et al.  Calcium stores regulate the polarity and input specificity of synaptic modification , 2000, Nature.

[18]  Y. Dan,et al.  Spike Timing-Dependent Plasticity of Neural Circuits , 2004, Neuron.

[19]  S. Kain,et al.  Generation of Destabilized Green Fluorescent Protein as a Transcription Reporter* , 1998, The Journal of Biological Chemistry.

[20]  F. Engert,et al.  Synapse specificity of long-term potentiation breaks down at short distances , 1997, Nature.

[21]  D. Muller,et al.  A simple method for organotypic cultures of nervous tissue , 1991, Journal of Neuroscience Methods.

[22]  Eckart D Gundelfinger,et al.  Local Sharing as a Predominant Determinant of Synaptic Matrix Molecular Dynamics , 2006, PLoS biology.

[23]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[24]  K. Svoboda,et al.  Facilitation at single synapses probed with optical quantal analysis , 2002, Nature Neuroscience.

[25]  Petter Laake,et al.  Different modes of expression of AMPA and NMDA receptors in hippocampal synapses , 1999, Nature Neuroscience.

[26]  Massimo Scanziani,et al.  Role of intercellular interactions in heterosynaptic long-term depression , 1996, Nature.

[27]  K. Svoboda,et al.  Imaging Calcium Concentration Dynamics in Small Neuronal Compartments , 2004, Science's STKE.

[28]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[29]  K. Svoboda,et al.  Two-photon imaging in living brain slices. , 1999, Methods.

[30]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[31]  D. Madison,et al.  A requirement for the intercellular messenger nitric oxide in long-term potentiation. , 1991, Science.

[32]  J. Connor,et al.  Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses , 1991, Nature.

[33]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[34]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[35]  E. Kandel,et al.  Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  U. Frey,et al.  Synaptic tagging and long-term potentiation , 1997, Nature.

[37]  I. C. Wiseman An Embarrassment of Riches or a Richness of Embarrassments. , 1984 .

[38]  松崎 政紀 Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001 .

[39]  B. Sabatini,et al.  State-Dependent Calcium Signaling in Dendritic Spines of Striatal Medium Spiny Neurons , 2004, Neuron.

[40]  A Konnerth,et al.  Release and sequestration of calcium by ryanodine‐sensitive stores in rat hippocampal neurones , 1997, The Journal of physiology.

[41]  S. Wang,et al.  Malleability of Spike-Timing-Dependent Plasticity at the CA3–CA1 Synapse , 2006, The Journal of Neuroscience.

[42]  M. Bear,et al.  Metaplasticity: the plasticity of synaptic plasticity , 1996, Trends in Neurosciences.

[43]  K. Svoboda,et al.  The Number of Glutamate Receptors Opened by Synaptic Stimulation in Single Hippocampal Spines , 2004, The Journal of Neuroscience.

[44]  U. Frey,et al.  Weak before strong: dissociating synaptic tagging and plasticity-factor accounts of late-LTP , 1998, Neuropharmacology.

[45]  P. Andersen,et al.  Specific long-lasting potentiation of synaptic transmission in hippocampal slices , 1977, Nature.

[46]  Roberto Malinow,et al.  Glutamate Receptor Exocytosis and Spine Enlargement during Chemically Induced Long-Term Potentiation , 2006, The Journal of Neuroscience.

[47]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[48]  Karel Svoboda,et al.  NMDA Receptor Subunit-Dependent [Ca2+] Signaling in Individual Hippocampal Dendritic Spines , 2005, The Journal of Neuroscience.

[49]  E. Kandel,et al.  A Transient, Neuron-Wide Form of CREB-Mediated Long-Term Facilitation Can Be Stabilized at Specific Synapses by Local Protein Synthesis , 1999, Cell.

[50]  R. Morris,et al.  Competing for Memory Hippocampal LTP under Regimes of Reduced Protein Synthesis , 2004, Neuron.

[51]  H Wang,et al.  Priming-induced shift in synaptic plasticity in the rat hippocampus. , 1999, Journal of neurophysiology.

[52]  Karel Svoboda,et al.  ScanImage: Flexible software for operating laser scanning microscopes , 2003, Biomedical engineering online.

[53]  R. Malenka,et al.  The influence of prior synaptic activity on the induction of long-term potentiation. , 1992, Science.

[54]  Karel Svoboda,et al.  Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging , 2006, Nature Neuroscience.