Zero temperature-coefficient bias point over wide range of temperatures for single- and double-gate UTB-SOI n-MOSFETs with trapped charges

Abstract This paper is a unique attempt to identify the zero-temperature-coefficient ( ZTC ) point and other performance metrics for single gate (SG), double gate (DG), and gate stack double gate (GS-DG), ultra-thin body (UTB) silicon on insulator (SOI) n-MOSFET over wide range of temperatures (100–400 K) through 2-D device simulation. During the pre- and post-fabrication process, availability of the trapped charges is quite common and cannot be neglected in nanoscale devices. Subsequently the effect has been considered in simulation. Simulation results show the existence of a biasing point i.e. ZTC bias point, where the device parameters become independent of temperature. The impact of operating temperature ( T ) on various performance metrics like on current ( I on ), off current ( I off ), on-off current ratio ( I on /I off ), transconductance ( g m ), output conductance ( g d ), intrinsic gain ( A V ) and cut off frequency ( f T ) is also subjected to extensive analysis. The variation of ZTC point for transconductance ( Z T C g m ) and drain current ( Z T C I D S ) from SG to DG and GS-DG is compared. This further validates the application opportunities involved in designing RF circuits for a wide range of temperature applications.

[1]  Rashmi Nigam,et al.  Magnetic field dependent neutron powder diffraction studies of Ru0.9Sr2YCu2.1O7.9 , 2010 .

[2]  Jean-Pierre Raskin,et al.  High-temperature DC and RF behaviors of partially-depleted SOI MOSFET transistors , 2008 .

[3]  M. Bucher,et al.  Device Design Engineering for Optimum Analog/RF Performance of Nanoscale DG MOSFETs , 2012, IEEE Transactions on Nanotechnology.

[4]  G. Ghibaudo,et al.  Review on high-k dielectrics reliability issues , 2005, IEEE Transactions on Device and Materials Reliability.

[5]  F. Gámiz Temperature behaviour of electron mobility in double-gate silicon on insulator transistors , 2004 .

[6]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[7]  C. Hu,et al.  A comparative study of advanced MOSFET concepts , 1996 .

[8]  M. Bruel Silicon on insulator material technology , 1995 .

[9]  Massimo Vanzi,et al.  A physically based mobility model for numerical simulation of nonplanar devices , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  Jean-Pierre Colinge,et al.  Multiple-gate SOI MOSFETs , 2004 .

[11]  Sorin Cristoloveanu,et al.  Submicron SOI-MOSFETs for high temperature operation (300–600K) , 1997 .

[12]  Y. Tosaka,et al.  Scaling theory for double-gate SOI MOSFET's , 1993 .

[13]  S. K. Mohapatra,et al.  Impact of high-k gate dielectric on analog and RF performance of nanoscale DG-MOSFET , 2014, Microelectron. J..

[14]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[15]  G. Groeseneken,et al.  Temperature dependence of threshold voltage in thin-film SOI MOSFETs , 1990, IEEE Electron Device Letters.

[16]  H.-S. Philip Wong Beyond the conventional transistor , 2002, IBM J. Res. Dev..

[17]  D. E. Burk,et al.  A temperature-dependent SOI MOSFET model for high-temperature application (27 degrees C-300 degrees C) , 1991 .

[18]  Chenming Hu,et al.  Effects of high-/spl kappa/ gate dielectric materials on metal and silicon gate workfunctions , 2002, IEEE Electron Device Letters.

[19]  Effect of interlayer trapping and detrapping on the determination of interface state densities on high-k dielectric stacks , 2010 .

[20]  V. L. Rideout,et al.  Very small MOSFET's for low-temperature operation , 1977, IEEE Transactions on Electron Devices.

[21]  Ping Keung Ko,et al.  A MOSFET electron mobility model of wide temperature range (77 - 400 K) for IC simulation , 1997 .

[22]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[23]  Ashok K. Goel,et al.  Zero-Temperature-Coefficient Biasing Point of a Fully-Depleted SOI MOSFET , 2002, Computers and Their Applications.

[24]  Ninoslav Stojadinovic,et al.  The determination of zero temperature coefficient point in CMOS transistors , 1992 .

[25]  S. Chakraborty,et al.  Subthreshold Performance of Dual-Material Gate CMOS Devices and Circuits for Ultralow Power Analog/Mixed-Signal Applications , 2008, IEEE Transactions on Electron Devices.

[26]  B. Iniguez,et al.  Two-Dimensional Analytical Threshold Voltage and Subthreshold Swing Models of Undoped Symmetric Double-Gate MOSFETs , 2007, IEEE Transactions on Electron Devices.

[27]  Prasanna Kumar Sahu,et al.  A Study of SCEs and Analog FOMs in GS-DG- MOSFET with Lateral Asymmetric Channel Doping , 2013 .

[28]  Denis Flandre,et al.  Influence of device engineering on the analog and RF performances of SOI MOSFETs , 2003 .

[29]  C. Claeys,et al.  The temperature mobility degradation influence on the zero temperature coefficient of partially and fully depleted SOI MOSFETs , 2006, Microelectron. J..

[30]  R. Hall Electron-Hole Recombination in Germanium , 1952 .

[31]  R. L. Patterson,et al.  Electronic components and circuits for extreme temperature environments , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[32]  F. S. Shoucair,et al.  Analytical and experimental methods for zero-temperature-coefficient biasing of MOS transistors , 1989 .

[33]  Mohamed A. Osman,et al.  Zero-temperature-coefficient biasing point of partially depleted SOI MOSFET's , 1995 .

[34]  J. Kavalieros,et al.  High-/spl kappa//metal-gate stack and its MOSFET characteristics , 2004, IEEE Electron Device Letters.

[35]  G. Dewey,et al.  Application of high-κ gate dielectrics and metal gate electrodes to enable silicon and non-silicon logic nanotechnology , 2005 .

[36]  Sorin Cristoloveanu,et al.  Frontiers of silicon-on-insulator , 2003 .