Generalized Langmuir kinetic equation for ions adsorption model applied to electrical double layer capacitor
暂无分享,去创建一个
A. Lamberti | C. Pirri | G. Barbero | P. Zaccagnini | A. Alexe-Ionescu | C. Pirri | A. L. Alexe-Ionescu | A. Alexe-ionescu
[1] A. Lamberti,et al. Frequency dependence of the phenomenological parameters describing adsorption processes in supercapacitors , 2019, Electrochimica Acta.
[2] M. Bazant,et al. Electrochemical Impedance Imaging via the Distribution of Diffusion Times. , 2017, Physical review letters.
[3] Eider Goikolea,et al. Review on supercapacitors: Technologies and materials , 2016 .
[4] M. Borkovec,et al. Charge Regulation in the Electrical Double Layer: Ion Adsorption and Surface Interactions. , 2016, Langmuir : the ACS journal of surfaces and colloids.
[5] B. Dunn,et al. Where Do Batteries End and Supercapacitors Begin? , 2014, Science.
[6] J. Macdonald,et al. Transport process of ions in insulating media in the hyperbolic diffusion regime. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[7] M. Scalerandi,et al. Relaxation times of an electrolytic cell subject to an external electric field: role of ambipolar and free diffusion phenomena. , 2007, Journal of Physical Chemistry B.
[8] L. R. Evangelista,et al. Adsorption phenomena and anchoring energy in nematic liquid crystals , 2005 .
[9] Giovanni Barbero,et al. Role of the diffuse layer of the ionic charge on the impedance spectroscopy of a cell of liquid , 2005 .
[10] F. Penna,et al. Colloidal hard-rod fluids near geometrically structured substrates. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] M. Bazant,et al. Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[12] Bernard A. Boukamp,et al. A Linear Kronig‐Kramers Transform Test for Immittance Data Validation , 1995 .
[13] J. Dyre. A simple model of ac hopping conductivity in disordered solids , 1985 .
[14] R. Roscoe,et al. Mechanical Models for the Representation of Visco-Elastic Properties , 1950 .