Convergence Rate of Empirical Spectral Distribution of Random Matrices From Linear Codes

It is known that the empirical spectral distribution of random matrices obtained from linear codes of increasing length converges to the well-known Marchenko-Pastur law, if the Hamming distance of the dual codes is at least 5. In this paper, we prove that the convergence rate in probability is at least of the order <inline-formula> <tex-math notation="LaTeX">$n^{-1/4}$ </tex-math></inline-formula> where <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> is the length of the code.

[1]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[2]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[3]  W. Marsden I and J , 2012 .

[4]  Cunsheng Ding,et al.  Parameters of Several Classes of BCH Codes , 2015, IEEE Transactions on Information Theory.

[5]  F. Benaych-Georges,et al.  Lectures on the local semicircle law for Wigner matrices , 2016, 1601.04055.

[6]  Z. Bai,et al.  Convergence Rate of Expected Spectral Distributions of Large Random Matrices. Part II. Sample Covariance Matrices , 1993 .

[7]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[8]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[9]  Z. Bai,et al.  Convergence Rate of Expected Spectral Distributions of Large Random Matrices. Part I. Wigner Matrices , 1993 .

[10]  L. Erdős Universality of Wigner random matrices: a survey of recent results , 2010, 1004.0861.

[11]  Kaisa Nyberg,et al.  Perfect nonlinear functions and cryptography , 2015, Finite Fields Their Appl..

[12]  M. Potters,et al.  Exponential Weighting and Random-Matrix-Theory-Based Filtering of Financial Covariance Matrices for Portfolio Optimization , 2004, cond-mat/0402573.

[13]  V. Tarokh,et al.  Group randomness properties of pseudo-noise and gold sequences , 2011, 2011 12th Canadian Workshop on Information Theory.

[14]  A. Robert Calderbank,et al.  Construction of a Large Class of Deterministic Sensing Matrices That Satisfy a Statistical Isometry Property , 2009, IEEE Journal of Selected Topics in Signal Processing.

[15]  Rongrong Wang,et al.  Restricted Isometry Property of Random Subdictionaries , 2015, IEEE Transactions on Information Theory.

[16]  Cedric E. Ginestet Spectral Analysis of Large Dimensional Random Matrices, 2nd edn , 2012 .

[17]  H. Yau,et al.  Isotropic local laws for sample covariance and generalized Wigner matrices , 2013, 1308.5729.

[18]  J. Wishart THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .

[19]  Maosheng Xiong,et al.  Random Matrices From Linear Codes and Wigner’s Semicircle Law , 2018, IEEE Transactions on Information Theory.

[20]  Z. Bai,et al.  Convergence rate of expected spectral distributions of large random matrices , 2008 .

[21]  Vahid Tarokh,et al.  Spectral Distribution of Random Matrices From Binary Linear Block Codes , 2011, IEEE Transactions on Information Theory.

[22]  Alexander Pott,et al.  Almost perfect and planar functions , 2016, Des. Codes Cryptogr..

[23]  N. Pillai,et al.  Universality of covariance matrices , 2011, 1110.2501.

[24]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[25]  Vahid Tarokh,et al.  Random frames from binary linear block codes , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[26]  V. Girko Asymptotics of the distribution of the spectrum of random matrices , 1989 .

[27]  Jing Xia,et al.  On a Question of Babadi and Tarokh , 2014, IEEE Transactions on Information Theory.

[28]  Zhidong Bai,et al.  CONVERGENCE RATE OF EXPECTED SPECTRAL DISTRIBUTIONS OF LARGE RANDOM MATRICES PART II: SAMPLE COVARIANCE MATRICES , 2008 .

[29]  Vera Pless Review: F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. I and II , 1978 .