Dynamic similarity in fluidization

Abstract Similitude is a powerful tool which allows a small laboratory experiment at ambient conditions to simulate a much larger commercial fluidized bed. The scaling laws for bed dynamics and heat transfer are systematically developed from the fundamental relationships. Recent results demonstrate the validity of scaling and shed light on the key parameters which must be included in scaling. Simplified forms of the similitude relationships are identified.

[1]  J. Grace,et al.  Suspension‐to‐Surface heat transfer in a circulating‐fluidized‐bed combustor , 1989 .

[2]  S. Russell Keim Fluid Resistance to Cylinders in Accelerated Motion , 1956 .

[3]  Akira Nonaka,et al.  A new similarity rule for fluidized bed scale‐up , 1986 .

[4]  F. White Viscous Fluid Flow , 1974 .

[5]  L. Glicksman,et al.  An experimental investigation of gas flow in a scale model of a fluidized-bed combustor , 1986 .

[6]  T. B. Anderson,et al.  Fluid Mechanical Description of Fluidized Beds. Equations of Motion , 1967 .

[7]  J. R. Radbill,et al.  Similitude and Approximation Theory , 1986 .

[8]  R. Adrian,et al.  Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity , 1991, Journal of Fluid Mechanics.

[9]  Leon R. Glicksman,et al.  Thermal resistance at a surface in contact with fluidized bed particles , 1984 .

[10]  T. Fitzgerald,et al.  Testing of cold scaled bed modeling for fluidized bed combustors , 1984 .

[11]  L. G. Gibilaro,et al.  A fully predictive criterion for the transition between particulate and aggregate fluidization , 1984 .

[12]  Stuart W. Churchill,et al.  Radiant heat transfer in packed beds , 1963 .

[13]  Wallis S. Hamilton,et al.  Forces on a sphere accelerating in a viscous fluid , 1964, Journal of Fluid Mechanics.

[14]  J. Riley,et al.  Equation of motion for a small rigid sphere in a nonuniform flow , 1983 .

[15]  J. Brady,et al.  The force on a sphere in a uniform flow with small-amplitude oscillations at finite Reynolds number , 1993, Journal of Fluid Mechanics.

[16]  H. W. Iversen,et al.  A Correlating Modulus for Fluid Resistance in Accelerated Motion , 1951 .

[17]  Gilbert F. Froment,et al.  Heat transfer in packed beds , 1972 .

[18]  G. A. Bird,et al.  The structure of normal shock waves in a binary gas mixture , 1968, Journal of Fluid Mechanics.

[19]  A. Maude End effects in a falling-sphere viscometer , 1961 .

[20]  Leon R. Glicksman,et al.  Shorter CommunicationScaling relationships for fluidized beds , 1988 .

[21]  Gérard Gouesbet,et al.  Particle lagrangian simulation in turbulent flows , 1990 .

[22]  V. Zakkay,et al.  An investigation of fluidized-bed scaling: heat transfer measurements in a pressurized fluidized-bed combustor and a cold model bed , 1990 .

[23]  C. Wen Mechanics of Fluidization , 1966 .

[24]  K Kornelis Rietema,et al.  The effect of interparticle forces on the stability of gas-fluidized beds - I.Experimental evidence , 1990 .

[25]  T. J. Hanratty,et al.  Particle dispersion in isotropic turbulence under Stokes drag and Basset force with gravitational settling , 1991, Journal of Fluid Mechanics.

[26]  K Kornelis Rietema,et al.  The effects of interparticle forces on the stability of gas-fluidized beds—II. Theoretical derivation of bed elasticity on the basis of van der Waals forces between powder particles , 1993 .

[27]  H. Brenner The slow motion of a sphere through a viscous fluid towards a plane surface , 1961 .

[28]  P. Saffman The lift on a small sphere in a slow shear flow , 1965, Journal of Fluid Mechanics.

[29]  Leon R. Glicksman,et al.  The influence of particle mechanical properties on bubble characteristics and solid mixing in fluidized beds , 1985 .

[30]  Cor M. van den Bleek,et al.  Can deterministic chaos create order in fluidized-bed scale-up? , 1993 .

[31]  Mingchuan Zhang,et al.  On the scaling laws for bubbling gas-fluidized bed dynamics , 1987 .

[32]  Leon R. Glicksman,et al.  Experimental verification of scaling relationships for fluidized bed , 1984 .

[33]  Leon R. Glicksman,et al.  Simplified scaling relationships for fluidized beds , 1993 .

[34]  Prediction of the particle flow conditions in the freeboard of a freely bubbling fluidized bed , 1995 .

[35]  Fuat Odar,et al.  Verification of the proposed equation for calculation of the forces on a sphere accelerating in a viscous fluid , 1966, Journal of Fluid Mechanics.

[36]  E. Buckingham On Physically Similar Systems; Illustrations of the Use of Dimensional Equations , 1914 .

[37]  L. T. Fan,et al.  Pressure fluctuations in a fluidized bed , 1981 .

[38]  L. R. Glicksman,et al.  Scaling relationship for fluidized beds , 1984 .

[39]  S. Rapagnà,et al.  Cold modelling studies of fluidised bed reactors , 1992 .

[40]  C. Tien Thermal Radiation in Packed and Fluidized Beds , 1988 .

[41]  C. Wen,et al.  A generalized method for predicting the minimum fluidization velocity , 1966 .

[42]  J. Brady,et al.  The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number , 1993, Journal of Fluid Mechanics.

[43]  R. C. Lirag,et al.  STATISTICAL STUDY OF THE PRESSURE FLUCTUATIONS IN A FLUIDIZED BED. , 1971 .

[44]  L. Glicksman,et al.  Particle density distribution in a freeboard of a fluidized bed , 1987 .

[45]  Leon R. Glicksman,et al.  Prediction of the expansion of fluidized beds containing tubes , 1991 .

[46]  R. Adrian,et al.  Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number , 1992, Journal of Fluid Mechanics.

[47]  C. Tchen,et al.  Mean Value and Correlation Problems connected with the Motion of Small Particles suspended in a turbulent fluid , 1947 .

[48]  Daw,et al.  Chaotic characteristics of a complex gas-solids flow. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[49]  L. G. Gibilaro,et al.  Scaling relationships for fluidisation: the generalised particle bed model , 1990 .

[50]  C. Teitelboim RADIATION REACTION AS A RETARDED SELF-INTERACTION. , 1971 .

[51]  Michel Y. Louge,et al.  Fluid dynamic similarity of circulating fluidized beds , 1992 .

[52]  Masayuki Horio,et al.  A Scaling Law for Circulating Fluidized Beds , 1989 .

[53]  Kakichi Hirai,et al.  Fluidization of Solid Particles , 1953 .

[54]  Leon R. Glicksman,et al.  Scaling relationships for fluidized beds , 1984 .

[55]  Sergei Stepanovich Zabrodskii Hydrodynamics and heat transfer in fluidized beds , 1966 .

[56]  J. Brady,et al.  The force on a bubble, drop, or particle in arbitrary time‐dependent motion at small Reynolds number , 1993 .

[57]  H. Mickley,et al.  Mechanism of heat transfer to fluidized beds , 1955 .

[58]  Wen-Ching Yang,et al.  Criteria for choking in vertical pneumatic conveying lines , 1983 .

[59]  P. U. Foscolo,et al.  Dynamic similarity rules: Validity check for bubbling and slugging fluidized beds , 1992 .

[60]  D. V. Krevelen,et al.  Mechanism of Heat Transfer in Fluidized Beds , 1953 .