Human cellular restriction factors that target HIV-1 replication

[1]  S. Le,et al.  Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid , 2009, Nucleic acids research.

[2]  J. Luban,et al.  HIV-1 Vpu Neutralizes the Antiviral Factor Tetherin/BST-2 by Binding It and Directing Its Beta-TrCP2-Dependent Degradation , 2009, PLoS pathogens.

[3]  B. Berkhout,et al.  Differential RNA silencing suppression activity of NS1 proteins from different influenza A virus strains. , 2009, The Journal of general virology.

[4]  Marc C. Johnson,et al.  Nef proteins from simian immunodeficiency viruses are tetherin antagonists. , 2009, Cell host & microbe.

[5]  G. Ebel,et al.  RNAi Targeting of West Nile Virus in Mosquito Midguts Promotes Virus Diversification , 2009, PLoS pathogens.

[6]  Hong Cao,et al.  Cellular microRNA and P bodies modulate host-HIV-1 interactions. , 2009, Molecular cell.

[7]  H. Matsuo,et al.  An extended structure of the APOBEC3G catalytic domain suggests a unique holoenzyme model. , 2009, Journal of molecular biology.

[8]  Mark Yeager,et al.  X-Ray Structures of the Hexameric Building Block of the HIV Capsid , 2009, Cell.

[9]  Xiaojun Wang,et al.  Identification of a Novel WxSLVK Motif in the N Terminus of Human Immunodeficiency Virus and Simian Immunodeficiency Virus Vif That Is Critical for APOBEC3G and APOBEC3F Neutralization , 2009, Journal of Virology.

[10]  Xiao-Fang Yu,et al.  A Patch of Positively Charged Amino Acids Surrounding the Human Immunodeficiency Virus Type 1 Vif SLVx4Yx9Y Motif Influences Its Interaction with APOBEC3G , 2009, Journal of Virology.

[11]  A. Moses,et al.  Vpu Directs the Degradation of the Human Immunodeficiency Virus Restriction Factor BST-2/Tetherin via a βTrCP-Dependent Mechanism , 2009, Journal of Virology.

[12]  V. Pathak,et al.  Intracellular interactions between APOBEC3G, RNA, and HIV-1 Gag: APOBEC3G multimerization is dependent on its association with RNA , 2009, Retrovirology.

[13]  T. Schaller,et al.  Truncation of TRIM5 in the Feliformia Explains the Absence of Retroviral Restriction in Cells of the Domestic Cat , 2009, Journal of Virology.

[14]  Takeshi Yoshida,et al.  Comparative study on the effect of human BST-2/Tetherin on HIV-1 release in cells of various species , 2009, Retrovirology.

[15]  M. Wainberg,et al.  The Transmembrane Domain of BST-2 Determines Its Sensitivity to Down-Modulation by Human Immunodeficiency Virus Type 1 Vpu , 2009, Journal of Virology.

[16]  Kuan-Teh Jeang,et al.  A Genome-wide Short Hairpin RNA Screening of Jurkat T-cells for Human Proteins Contributing to Productive HIV-1 Replication* , 2009, The Journal of Biological Chemistry.

[17]  N. Landau,et al.  Restriction of HIV-1 by APOBEC3G is cytidine deaminase-dependent. , 2009, Virology.

[18]  M. Weitzman,et al.  Deaminase-Independent Inhibition of Parvoviruses by the APOBEC3A Cytidine Deaminase , 2009, PLoS pathogens.

[19]  R. Benarous,et al.  Vpu Antagonizes BST-2–Mediated Restriction of HIV-1 Release via β-TrCP and Endo-Lysosomal Trafficking , 2009, PLoS pathogens.

[20]  D. Pillay,et al.  Mutation of a Single Residue Renders Human Tetherin Resistant to HIV-1 Vpu-Mediated Depletion , 2009, PLoS pathogens.

[21]  S. Westmoreland,et al.  Species-Specific Activity of SIV Nef and HIV-1 Vpu in Overcoming Restriction by Tetherin/BST2 , 2009, PLoS pathogens.

[22]  Yali Zhu,et al.  Herpes Simplex Virus Type 1 Suppresses RNA-Induced Gene Silencing in Mammalian Cells , 2009, Journal of Virology.

[23]  I. Rigoutsos New tricks for animal microRNAS: targeting of amino acid coding regions at conserved and nonconserved sites. , 2009, Cancer research.

[24]  S. Ross Are Viruses Inhibited by APOBEC3 Molecules from Their Host Species? , 2009, PLoS pathogens.

[25]  H. Kräusslich,et al.  HIV-1 antagonism of CD317 is species specific and involves Vpu-mediated proteasomal degradation of the restriction factor. , 2009, Cell host & microbe.

[26]  M. Emerman,et al.  An expanded clade of rodent Trim5 genes. , 2009, Virology.

[27]  J. Ward,et al.  Requirement for Sun1 in the expression of meiotic reproductive genes and piRNA , 2009, Development.

[28]  Y. Lévy,et al.  Suppression of HIV-1 replication by microRNA effectors , 2009, Retrovirology.

[29]  B. Berkhout,et al.  The NS3 protein of rice hoja blanca virus complements the RNAi suppressor function of HIV‐1 Tat , 2009, EMBO reports.

[30]  M. Kamata,et al.  Reassessing the Role of APOBEC3G in Human Immunodeficiency Virus Type 1 Infection of Quiescent CD4+ T-Cells , 2009, PLoS pathogens.

[31]  M. Malim,et al.  RNA-Dependent Oligomerization of APOBEC3G Is Required for Restriction of HIV-1 , 2009, PLoS pathogens.

[32]  Carla Oliveira,et al.  A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function , 2009, Nature Genetics.

[33]  É. Cohen,et al.  Suppression of Tetherin-Restricting Activity upon Human Immunodeficiency Virus Type 1 Particle Release Correlates with Localization of Vpu in the trans-Golgi Network , 2009, Journal of Virology.

[34]  K. Strebel,et al.  Vpu enhances HIV-1 virus release in the absence of Bst-2 cell surface down-modulation and intracellular depletion , 2009, Proceedings of the National Academy of Sciences.

[35]  P. Bates,et al.  Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein , 2009, Proceedings of the National Academy of Sciences.

[36]  S. Yokoyama,et al.  Structure, interaction and real‐time monitoring of the enzymatic reaction of wild‐type APOBEC3G , 2009, The EMBO journal.

[37]  P. Bieniasz,et al.  Species-Specific Activity of HIV-1 Vpu and Positive Selection of Tetherin Transmembrane Domain Variants , 2009, PLoS pathogens.

[38]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[39]  Jeremy Luban,et al.  An Invariant Surface Patch on the TRIM5α PRYSPRY Domain Is Required for Retroviral Restriction but Dispensable for Capsid Binding , 2009, Journal of Virology.

[40]  D. Metzger,et al.  Cellular microRNA expression correlates with susceptibility of monocytes/macrophages to HIV-1 infection. , 2009, Blood.

[41]  Xuehua Zhong,et al.  HIV-1 Tat RNA silencing suppressor activity is conserved across kingdoms and counteracts translational repression of HIV-1 , 2009, Proceedings of the National Academy of Sciences.

[42]  Z. Klase,et al.  HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression , 2009, Retrovirology.

[43]  V. Pathak,et al.  APOBEC3G induces a hypermutation gradient: purifying selection at multiple steps during HIV-1 replication results in levels of G-to-A mutations that are high in DNA, intermediate in cellular viral RNA, and low in virion RNA , 2009, Retrovirology.

[44]  Cheryl Bolinger,et al.  Mechanisms employed by retroviruses to exploit host factors for translational control of a complicated proteome , 2009, Retrovirology.

[45]  Kuan-Teh Jeang,et al.  MicroRNA profile changes in human immunodeficiency virus type 1 (HIV-1) seropositive individuals , 2008, Retrovirology.

[46]  Erez Pery,et al.  Regulation of APOBEC3 Proteins by a Novel YXXL Motif in Human Immunodeficiency Virus Type 1 Vif and Simian Immunodeficiency Virus SIVagm Vif , 2008, Journal of Virology.

[47]  V. Scaria,et al.  Human cellular microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication , 2008, Retrovirology.

[48]  A. Saïb,et al.  Integrase and integration: biochemical activities of HIV-1 integrase , 2008, Retrovirology.

[49]  G. Melikyan,et al.  Common principles and intermediates of viral protein-mediated fusion: the HIV-1 paradigm , 2008, Retrovirology.

[50]  V. Pathak,et al.  Distinct Domains within APOBEC3G and APOBEC3F Interact with Separate Regions of Human Immunodeficiency Virus Type 1 Vif , 2008, Journal of Virology.

[51]  P. Bieniasz,et al.  Broad-Spectrum Inhibition of Retroviral and Filoviral Particle Release by Tetherin , 2008, Journal of Virology.

[52]  Amy S. Espeseth,et al.  Genome-scale RNAi screen for host factors required for HIV replication. , 2008, Cell host & microbe.

[53]  M. Khan,et al.  Differential Sensitivity of “Old” versus “New” APOBEC3G to Human Immunodeficiency Virus Type 1 Vif , 2008, Journal of Virology.

[54]  R. Stevens,et al.  Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications , 2008, Nature.

[55]  S. O’Brien,et al.  Guidelines for Naming Nonprimate APOBEC3 Genes and Proteins , 2008, Journal of Virology.

[56]  K. Jeang,et al.  The roles of microRNAs in mammalian virus infection. , 2008, Biochimica et biophysica acta.

[57]  Kuan-Teh Jeang,et al.  25 years of HIV-1 research – progress and perspectives , 2008, BMC medicine.

[58]  Yvonne Tay,et al.  MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation , 2008, Nature.

[59]  Robert Blelloch,et al.  Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. , 2008, Genes & development.

[60]  R. König,et al.  Global Analysis of Host-Pathogen Interactions that Regulate Early-Stage HIV-1 Replication , 2008, Cell.

[61]  C. Aiken,et al.  Cyclophilin A-Dependent Restriction of Human Immunodeficiency Virus Type 1 Capsid Mutants for Infection of Nondividing Cells , 2008, Journal of Virology.

[62]  M. Emerman,et al.  Determinants of cyclophilin A-dependent TRIM5 alpha restriction against HIV-1. , 2008, Virology.

[63]  B. Berkhout,et al.  ESF-EMBO Symposium: Antiviral Applications of RNA Interference , 2008, Retrovirology.

[64]  J. Sodroski,et al.  The TRIM5α B-Box 2 Domain Promotes Cooperative Binding to the Retroviral Capsid by Mediating Higher-Order Self-Association , 2008, Journal of Virology.

[65]  J. Sodroski,et al.  Biochemical Characterization of a Recombinant TRIM5α Protein That Restricts Human Immunodeficiency Virus Type 1 Replication , 2008, Journal of Virology.

[66]  Wenyan Zhang,et al.  Characterization of conserved motifs in HIV-1 Vif required for APOBEC3G and APOBEC3F interaction. , 2008, Journal of molecular biology.

[67]  K. Jeang,et al.  Insights into cellular microRNAs and human immunodeficiency virus type 1 (HIV‐1) , 2008, Journal of cellular physiology.

[68]  M. Khan,et al.  APOBEC3G encapsidation into HIV-1 virions: which RNA is it? , 2008, Retrovirology.

[69]  K. Strebel,et al.  HIV-1 Vif, APOBEC, and Intrinsic Immunity , 2008, Retrovirology.

[70]  B. Cullen,et al.  Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. , 2008, Cell host & microbe.

[71]  R. Bram,et al.  Identification of calcium-modulating cyclophilin ligand as a human host restriction to HIV-1 release overcome by Vpu , 2008, Nature Medicine.

[72]  Y. Sakaki,et al.  Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes , 2008, Nature.

[73]  Juan Chen,et al.  HCV core protein interacts with Dicer to antagonize RNA silencing. , 2008, Virus research.

[74]  Marc C. Johnson,et al.  The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. , 2008, Cell host & microbe.

[75]  K. Wada,et al.  Ubiquitination of E3 ubiquitin ligase TRIM5α and its potential role , 2008, The FEBS journal.

[76]  B. Berkhout,et al.  Increased virus replication in mammalian cells by blocking intracellular innate defense responses , 2008, Gene Therapy.

[77]  H. Matsuo,et al.  Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G , 2008, Nature.

[78]  J. Heeney,et al.  Independent evolution of an antiviral TRIMCyp in rhesus macaques , 2008, Proceedings of the National Academy of Sciences.

[79]  P. Bieniasz,et al.  Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species , 2008, Proceedings of the National Academy of Sciences.

[80]  Shiu-Lok Hu,et al.  TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis , 2008, Proceedings of the National Academy of Sciences.

[81]  R. Crabbé,et al.  The cyclophilin inhibitor Debio‐025 shows potent anti–hepatitis C effect in patients coinfected with hepatitis C and human immunodeficiency virus , 2008, Hepatology.

[82]  Louis Flamand,et al.  Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element† , 2008, Nucleic acids research.

[83]  Ruchi M. Newman,et al.  Evolution of a TRIM5-CypA Splice Isoform in Old World Monkeys , 2008, PLoS pathogens.

[84]  P. Bieniasz,et al.  Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu , 2008, Nature.

[85]  R. Harris,et al.  The DNA Deaminase Activity of Human APOBEC3G Is Required for Ty1, MusD, and Human Immunodeficiency Virus Type 1 Restriction , 2008, Journal of Virology.

[86]  L. Kleiman,et al.  Function analysis of sequences in human APOBEC3G involved in Vif-mediated degradation. , 2008, Virology.

[87]  W. Theurkauf,et al.  Biogenesis and germline functions of piRNAs , 2007, Development.

[88]  J. Lieberman,et al.  Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen , 2007, Science.

[89]  M. Khan,et al.  Production of infectious virus and degradation of APOBEC3G are separable functional properties of human immunodeficiency virus type 1 Vif. , 2007, Virology.

[90]  B. Berkhout,et al.  RNA interference against viruses: strike and counterstrike , 2007, Nature Biotechnology.

[91]  Gene W Yeo,et al.  RNA sequence analysis defines Dicer's role in mouse embryonic stem cells , 2007, Proceedings of the National Academy of Sciences.

[92]  K. Jeang,et al.  Small non-coding RNAs, mammalian cells, and viruses: regulatory interactions? , 2007, Retrovirology.

[93]  M. Khan,et al.  Enzymatically Active APOBEC3G Is Required for Efficient Inhibition of Human Immunodeficiency Virus Type 1 , 2007, Journal of Virology.

[94]  Masaru Tomita,et al.  Computational analysis of microRNA‐mediated antiviral defense in humans , 2007, FEBS letters.

[95]  M. Emerman,et al.  Evidence for Direct Involvement of the Capsid Protein in HIV Infection of Nondividing Cells , 2007, PLoS pathogens.

[96]  K. Moelling,et al.  Dicer is involved in protection against influenza A virus infection. , 2007, The Journal of general virology.

[97]  Jialing Huang,et al.  Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes , 2007, Nature Medicine.

[98]  Erez Pery,et al.  Identification of an APOBEC3G Binding Site in Human Immunodeficiency Virus Type 1 Vif and Inhibitors of Vif-APOBEC3G Binding , 2007, Journal of Virology.

[99]  L. Berthoux,et al.  Both TRIM5α and TRIMCyp have only weak antiviral activity in canine D17 cells , 2007, Retrovirology.

[100]  B. Berkhout,et al.  RISCy Business: MicroRNAs, Pathogenesis, and Viruses* , 2007, Journal of Biological Chemistry.

[101]  W. Sundquist,et al.  An interferon-alpha-induced tethering mechanism inhibits HIV-1 and Ebola virus particle release but is counteracted by the HIV-1 Vpu protein. , 2007, Cell host & microbe.

[102]  J. Mattick,et al.  Raising the estimate of functional human sequences. , 2007, Genome research.

[103]  T. Schaller,et al.  An Active TRIM5 Protein in Rabbits Indicates a Common Antiviral Ancestor for Mammalian TRIM5 Proteins , 2007, Journal of Virology.

[104]  C. Aiken,et al.  Analysis of Human Cell Heterokaryons Demonstrates that Target Cell Restriction of Cyclosporine-Resistant Human Immunodeficiency Virus Type 1 Mutants Is Genetically Dominant , 2007, Journal of Virology.

[105]  Olivier Voinnet,et al.  Antiviral Immunity Directed by Small RNAs , 2007, Cell.

[106]  R. Berro,et al.  HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR , 2007, BMC Molecular Biology.

[107]  Ryan Cook,et al.  Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. , 2007, Immunity.

[108]  B. Segerman,et al.  Adenovirus Virus-Associated RNAII-Derived Small RNAs Are Efficiently Incorporated into the RNA-Induced Silencing Complex and Associate with Polyribosomes , 2007, Journal of Virology.

[109]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[110]  S. Guadagnini,et al.  HIV‐1 DNA Flap formation promotes uncoating of the pre‐integration complex at the nuclear pore , 2007, The EMBO journal.

[111]  G. Towers The control of viral infection by tripartite motif proteins and cyclophilin A , 2007, Retrovirology.

[112]  B. Berkhout,et al.  The Ebola Virus VP35 Protein Is a Suppressor of RNA Silencing , 2007, PLoS pathogens.

[113]  V. Pathak,et al.  Identification of Two Distinct Human Immunodeficiency Virus Type 1 Vif Determinants Critical for Interactions with Human APOBEC3G and APOBEC3F , 2007, Journal of Virology.

[114]  Jianbo Chen,et al.  Stoichiometry of the antiviral protein APOBEC3G in HIV-1 virions. , 2007, Virology.

[115]  G. Hannon,et al.  MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. , 2007, Developmental cell.

[116]  A. Savarino Retrovirology In-silico Docking of Hiv-1 Integrase Inhibitors Reveals a Novel Drug Type Acting on an Enzyme/dna Reaction Intermediate , 2022 .

[117]  Pascal Barbry,et al.  Suppression of MicroRNA-Silencing Pathway by HIV-1 During Virus Replication , 2007, Science.

[118]  P. Spearman,et al.  APOBEC3G Multimers Are Recruited to the Plasma Membrane for Packaging into Human Immunodeficiency Virus Type 1 Virus-Like Particles in an RNA-Dependent Process Requiring the NC Basic Linker , 2007, Journal of Virology.

[119]  Jianming Hu,et al.  Deamination-Independent Inhibition of Hepatitis B Virus Reverse Transcription by APOBEC3G , 2007, Journal of Virology.

[120]  M. Malim,et al.  Identification of Amino Acid Residues in APOBEC3G Required for Regulation by Human Immunodeficiency Virus Type 1 Vif and Virion Encapsidation , 2007, Journal of Virology.

[121]  S. Cohen,et al.  microRNA functions. , 2007, Annual review of cell and developmental biology.

[122]  E. Freed,et al.  Human immunodeficiency virus type 1 assembly, release, and maturation. , 2007, Advances in pharmacology.

[123]  K. Jeang,et al.  HIV-1 Tat interaction with Dicer: requirement for RNA , 2006, Retrovirology.

[124]  Yan Yang,et al.  N-terminal and C-terminal cytosine deaminase domain of APOBEC3G inhibit hepatitis B virus replication. , 2006, World journal of gastroenterology.

[125]  A. McCormack,et al.  Quantitative Membrane Proteomics Reveals New Cellular Targets of Viral Immune Modulators , 2006, PLoS pathogens.

[126]  D. Pérez-Caballero,et al.  Antiretroviral potential of human tripartite motif-5 and related proteins. , 2006, Virology.

[127]  K. Jeang,et al.  HIV-1 TAR RNA Subverts RNA Interference in Transfected Cells through Sequestration of TAR RNA-binding Protein, TRBP* , 2006, Journal of Biological Chemistry.

[128]  J. Luban Cyclophilin A, TRIM5, and Resistance to Human Immunodeficiency Virus Type 1 Infection , 2006, Journal of Virology.

[129]  B. Berkhout,et al.  The virion-associated incoming HIV-1 RNA genome is not targeted by RNA interference , 2006, Retrovirology.

[130]  N. Yang,et al.  L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells , 2006, Nature Structural &Molecular Biology.

[131]  J. Löwer,et al.  APOBEC3 Proteins Inhibit Human LINE-1 Retrotransposition* , 2006, Journal of Biological Chemistry.

[132]  A. Engelman,et al.  Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1. , 2006, Virology.

[133]  Timothy P. L. Smith,et al.  Isolation of an Active Lv1 Gene from Cattle Indicates that Tripartite Motif Protein-Mediated Innate Immunity to Retroviral Infection Is Widespread among Mammals , 2006, Journal of Virology.

[134]  Toshiaki Watanabe,et al.  Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. , 2006, Genes & development.

[135]  K. Jeang,et al.  Replication of human immunodeficiency virus type 1 from entry to exit , 2006, International journal of hematology.

[136]  M. Khan,et al.  Monomeric APOBEC3G Is Catalytically Active and Has Antiviral Activity , 2006, Journal of Virology.

[137]  T. Hope,et al.  Proteasome inhibitors uncouple rhesus TRIM5alpha restriction of HIV-1 reverse transcription and infection. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[138]  A. Engelman,et al.  Evolution of a cytoplasmic tripartite motif (TRIM) protein in cows that restricts retroviral infection. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[139]  P. Bieniasz,et al.  HIV-1 Vpu Promotes Release and Prevents Endocytosis of Nascent Retrovirus Particles from the Plasma Membrane , 2006, PLoS pathogens.

[140]  Mark P. Dodding,et al.  Trim-Cyclophilin A Fusion Proteins Can Restrict Human Immunodeficiency Virus Type 1 Infection at Two Distinct Phases in the Viral Life Cycle , 2006, Journal of Virology.

[141]  Joseph Sodroski,et al.  Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[142]  J. Luban,et al.  Cyclophilin A and TRIM5α Independently Regulate Human Immunodeficiency Virus Type 1 Infectivity in Human Cells , 2006, Journal of Virology.

[143]  N. Kato,et al.  Hepatitis C virus core protein is a potent inhibitor of RNA silencing-based antiviral response. , 2006, Gastroenterology.

[144]  B. Cullen,et al.  APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells , 2006, Nucleic acids research.

[145]  Kuan-Teh Jeang,et al.  Changes in microRNA expression profiles in HIV-1-transfected human cells , 2005, Retrovirology.

[146]  M. Soares,et al.  Evolution of Cyclophilin A and TRIMCyp Retrotransposition in New World Primates , 2005, Journal of Virology.

[147]  Vinod Scaria,et al.  Targets for human encoded microRNAs in HIV genes. , 2005, Biochemical and biophysical research communications.

[148]  J. Luban,et al.  Cyclophilin A is required for TRIM5α-mediated resistance to HIV-1 in Old World monkey cells , 2005 .

[149]  Anne Gatignol,et al.  TRBP, a regulator of cellular PKR and HIV‐1 virus expression, interacts with Dicer and functions in RNA silencing , 2005, EMBO reports.

[150]  D. Pinson,et al.  Scrambling of the amino acids within the transmembrane domain of Vpu results in a simian-human immunodeficiency virus (SHIVTM) that is less pathogenic for pig-tailed macaques. , 2005, Virology.

[151]  M. Malim,et al.  APOBEC‐mediated interference with hepadnavirus production , 2005, Hepatology.

[152]  Ben Berkhout,et al.  Suppression of RNA Interference by Adenovirus Virus-Associated RNA , 2005, Journal of Virology.

[153]  Y. Nagai,et al.  A Specific Region of 37 Amino Acid Residues in the SPRY (B30.2) Domain of African Green Monkey TRIM5α Determines Species-Specific Restriction of Simian Immunodeficiency Virus SIVmac Infection , 2005, Journal of Virology.

[154]  J. Luban,et al.  TRIM5α selectively binds a restriction-sensitive retroviral capsid , 2005, Retrovirology.

[155]  J. Luban,et al.  Disruption of Human TRIM5α Antiviral Activity by Nonhuman Primate Orthologues , 2005, Journal of Virology.

[156]  D. Ganem,et al.  A Virus-Encoded Inhibitor That Blocks RNA Interference in Mammalian Cells , 2005, Journal of Virology.

[157]  Amane Sasada,et al.  APOBEC3G targets human T-cell leukemia virus type 1 , 2005, Retrovirology.

[158]  J. Luban,et al.  Cyclophilin A-Deficient Mice Are Resistant to Immunosuppression by Cyclosporine1 , 2005, The Journal of Immunology.

[159]  W. Greene,et al.  Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells , 2005, Nature.

[160]  S. Le,et al.  Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. , 2005, Immunity.

[161]  A. Saïb,et al.  A Cellular MicroRNA Mediates Antiviral Defense in Human Cells , 2005, Science.

[162]  P. Cannon,et al.  Functional Domains within the Human Immunodeficiency Virus Type 2 Envelope Protein Required To Enhance Virus Production , 2005, Journal of Virology.

[163]  J. Sodroski,et al.  Species-Specific Variation in the B30.2(SPRY) Domain of TRIM5α Determines the Potency of Human Immunodeficiency Virus Restriction , 2005, Journal of Virology.

[164]  Michael Emerman,et al.  Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[165]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[166]  Jonathan P. Stoye,et al.  A Single Amino Acid Change in the SPRY Domain of Human Trim5α Leads to HIV-1 Restriction , 2005, Current Biology.

[167]  D. Pérez-Caballero,et al.  Cyclophilin Interactions with Incoming Human Immunodeficiency Virus Type 1 Capsids with Opposing Effects on Infectivity in Human Cells , 2005, Journal of Virology.

[168]  J. Luban,et al.  Cyclophilin A is required for TRIM5{alpha}-mediated resistance to HIV-1 in Old World monkey cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[169]  J. Luban,et al.  Disruption of human TRIM5alpha antiviral activity by nonhuman primate orthologues. , 2005, Journal of virology.

[170]  Jeremy Luban,et al.  Target Cell Cyclophilin A Modulates Human Immunodeficiency Virus Type 1 Infectivity , 2004, Journal of Virology.

[171]  B. Cullen,et al.  Adenovirus VA1 Noncoding RNA Can Inhibit Small Interfering RNA and MicroRNA Biogenesis , 2004, Journal of Virology.

[172]  J. Luban,et al.  Selection for Loss of Ref1 Activity in Human Cells Releases Human Immunodeficiency Virus Type 1 from Cyclophilin A Dependence during Infection , 2004, Journal of Virology.

[173]  J. Luban,et al.  Lv1 Inhibition of Human Immunodeficiency Virus Type 1 Is Counteracted by Factors That Stimulate Synthesis or Nuclear Translocation of Viral cDNA , 2004, Journal of Virology.

[174]  S. Nisole,et al.  A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[175]  A. Andreotti,et al.  Cyclophilin A regulates TCR signal strength in CD4+ T cells via a proline-directed conformational switch in Itk. , 2004, Immunity.

[176]  J. Luban,et al.  Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1 , 2004, Nature.

[177]  E. Marbán,et al.  Mutual functional destruction of HIV-1 Vpu and host TASK-1 channel. , 2004, Molecular cell.

[178]  J. García,et al.  Human influenza virus NS1 protein enhances viral pathogenicity and acts as an RNA silencing suppressor in plants. , 2004, The Journal of general virology.

[179]  E. Bucher,et al.  The influenza A virus NS1 protein binds small interfering RNAs and suppresses RNA silencing in plants. , 2004, The Journal of general virology.

[180]  C. M. Owens,et al.  The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys , 2004, Nature.

[181]  Shou-Wei Ding,et al.  Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[182]  P. Spearman,et al.  Viral protein U counteracts a human host cell restriction that inhibits HIV-1 particle production , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[183]  George Banting,et al.  Bst‐2/HM1.24 Is a Raft‐Associated Apical Membrane Protein with an Unusual Topology , 2003, Traffic.

[184]  P. Bieniasz,et al.  Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors , 2003, Nature Medicine.

[185]  P. Moitra,et al.  BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5delta. , 2003, Experimental cell research.

[186]  H. Akari,et al.  Naturally occurring amino acid substitutions in the HIV-2 ROD envelope glycoprotein regulate its ability to augment viral particle release. , 2003, Virology.

[187]  D. McDonald,et al.  Visualization of the intracellular behavior of HIV in living cells , 2002, The Journal of cell biology.

[188]  J. Luban,et al.  Cyclophilin A Peptidyl-Prolyl Isomerase Activity Promotes Zpr1 Nuclear Export , 2002, Molecular and Cellular Biology.

[189]  D. A. Bosco,et al.  Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[190]  J. Sodroski,et al.  Species-Specific, Postentry Barriers to Primate Immunodeficiency Virus Infection , 1999, Journal of Virology.

[191]  S. Joag,et al.  Chronology of genetic changes in the vpu, env, and Nef genes of chimeric simian-human immunodeficiency virus (strain HXB2) during acquisition of virulence for pig-tailed macaques. , 1998, Virology.

[192]  A. Panganiban,et al.  Functional Interaction of Human Immunodeficiency Virus Type 1 Vpu and Gag with a Novel Member of the Tetratricopeptide Repeat Protein Family , 1998, Journal of Virology.

[193]  M. A. Jabbar,et al.  Mutational Analysis of the Human Immunodeficiency Virus Type 1 Vpu Transmembrane Domain That Promotes the Enhanced Release of Virus-Like Particles from the Plasma Membrane of Mammalian Cells , 1998, Journal of Virology.

[194]  K. Strebel,et al.  The human immunodeficiency virus (HIV) type 2 envelope protein is a functional complement to HIV type 1 Vpu that enhances particle release of heterologous retroviruses , 1996, Journal of virology.

[195]  J. Luban,et al.  Cyclophilin A is required for the replication of group M human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus SIV(CPZ)GAB but not group O HIV-1 or other primate immunodeficiency viruses , 1996, Journal of virology.

[196]  M. Mulligan,et al.  Human immunodeficiency virus type 2 glycoprotein enhancement of particle budding: role of the cytoplasmic domain , 1996, Journal of virology.

[197]  M. Martin,et al.  Construction and characterization of a stable full-length macrophage-tropic HIV type 1 molecular clone that directs the production of high titers of progeny virions. , 1996, AIDS research and human retroviruses.

[198]  U. Schubert,et al.  The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains , 1996, Journal of virology.

[199]  U. Schubert,et al.  The envelope glycoprotein of human immunodeficiency virus type 2 enhances viral particle release: a Vpu-like factor? , 1996, Journal of virology.

[200]  U. Schubert,et al.  Augmentation of virus secretion by the human immunodeficiency virus type 1 Vpu protein is cell type independent and occurs in cultured human primary macrophages and lymphocytes , 1995, Journal of virology.

[201]  J. Inazawa,et al.  Molecular cloning and chromosomal mapping of a bone marrow stromal cell surface gene, BST2, that may be involved in pre-B-cell growth. , 1995, Genomics.

[202]  W. Haseltine,et al.  Functional analysis of the phosphorylation sites on the human immunodeficiency virus type 1 Vpu protein. , 1995, Journal of acquired immune deficiency syndromes and human retrovirology : official publication of the International Retrovirology Association.

[203]  J. Sodroski,et al.  Functional association of cyclophilin A with HIV-1 virions , 1994, Nature.

[204]  J. Luban,et al.  Specific incorporation of cyclophilin A into HIV-1 virions , 1994, Nature.

[205]  U. Schubert,et al.  Differential activities of the human immunodeficiency virus type 1-encoded Vpu protein are regulated by phosphorylation and occur in different cellular compartments , 1994, Journal of virology.

[206]  Jeremy Luban,et al.  Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B , 1993, Cell.

[207]  B. Berkhout,et al.  Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR. , 1991, Science.

[208]  T. Klimkait,et al.  The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release , 1990, Journal of virology.

[209]  J. Sodroski,et al.  Functional role of human immunodeficiency virus type 1 vpu. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[210]  T. Klimkait,et al.  A novel gene of HIV-1, vpu, and its 16-kilodalton product. , 1988, Science.