Estimates on the condition number of random rank-deficient matrices

Let r ≤ m ≤ n ∈ N and let A be a rank r matrix of size m x n, with entries in K = ℂ or K = R. The generalized condition number of A, which measures the sensitivity of Ker(A) to small perturbations of A, is defined as κ (A) = ∥A∥ ∥A † ∥, where † denotes Moore-Penrose pseudoinversion. In this paper we prove sharp lower and upper bounds on the probability distribution of this condition number, when the set of rank r, m x n matrices is endowed with the natural probability measure coming from the Gaussian measure in K m×n . We also prove an upper-bound estimate for the expected value of log κ in this setting.

[1]  J. Demmel The Probability That a Numerical, Analysis Problem Is Difficult , 2013 .

[2]  Carlos Beltrán,et al.  Estimates on the Distribution of the Condition Number of Singular Matrices , 2007, Found. Comput. Math..

[3]  F. Cucker,et al.  Smoothed analysis of complex conic condition numbers , 2006, math/0605635.

[4]  Zizhong Chen,et al.  Condition Numbers of Gaussian Random Matrices , 2005, SIAM J. Matrix Anal. Appl..

[5]  Carlos Beltrán,et al.  Upper bounds on the distribution of the condition number of singular matrices , 2005 .

[6]  Alan Edelman,et al.  Tails of Condition Number Distributions , 2005, SIAM J. Matrix Anal. Appl..

[7]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[8]  Stanislaw J. Szarek,et al.  Condition numbers of random matrices , 1991, J. Complex..

[9]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[10]  James Renegar,et al.  On the Efficiency of Newton's Method in Approximating All Zeros of a System of Complex Polynomials , 1987, Math. Oper. Res..

[11]  S. Smale On the efficiency of algorithms of analysis , 1985 .

[12]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[13]  T. O’Neil Geometric Measure Theory , 2002 .

[14]  Ralph Howard,et al.  The kinematic formula in Riemannian homogeneous spaces , 1993 .

[15]  A. Edelman On the distribution of a scaled condition number , 1992 .

[16]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[17]  L. Hua Harmonic analysis of functions of several complex variables in the classical domains , 1963 .

[18]  A. Turing ROUNDING-OFF ERRORS IN MATRIX PROCESSES , 1948 .