A Splitting Augmented Lagrangian Method for Low Multilinear-Rank Tensor Recovery

This paper studies a recovery task of finding a low multilinear-rank tensor that fulfills some linear constraints in the general settings, which has many applications in computer vision and graphics. This problem is named as the low multilinear-rank tensor recovery problem. The variable splitting technique and convex relaxation technique are used to transform this problem into a tractable constrained optimization problem. Considering the favorable structure of the problem, we develop a splitting augmented Lagrangian method (SALM) to solve the resulting problem. The proposed algorithm is easily implemented and its convergence can be proved under some conditions. Some preliminary numerical results on randomly generated and real completion problems show that the proposed algorithm is very effective and robust for tackling the low multilinear-rank tensor completion problem.

[1]  Misha Elena Kilmer,et al.  Third-Order Tensors as Operators on Matrices: A Theoretical and Computational Framework with Applications in Imaging , 2013, SIAM J. Matrix Anal. Appl..

[2]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[3]  Zheng-Hai Huang,et al.  A reweighted nuclear norm minimization algorithm for low rank matrix recovery , 2014, J. Comput. Appl. Math..

[4]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[5]  Naihua Xiu,et al.  Exact Low-Rank Matrix Recovery via Nonconvex Schatten P-Minimization , 2013, Asia Pac. J. Oper. Res..

[6]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[7]  Lei Yang,et al.  An iterative algorithm for third-order tensor multi-rank minimization , 2015, Computational Optimization and Applications.

[8]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[9]  M. Hestenes Multiplier and gradient methods , 1969 .

[10]  Xianjun Shi,et al.  A Fixed Point Iterative Method for Low $n$-Rank Tensor Pursuit , 2013, IEEE Transactions on Signal Processing.

[11]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[12]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[13]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[14]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[15]  Weiyu Xu,et al.  Null space conditions and thresholds for rank minimization , 2011, Math. Program..

[16]  Bingsheng He,et al.  Linearized Alternating Direction Method with Gaussian Back Substitution for Separable Convex Programming , 2011 .

[17]  Nikos Komodakis,et al.  Image Completion Using Global Optimization , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[18]  Johan A. K. Suykens,et al.  Learning with tensors: a framework based on convex optimization and spectral regularization , 2014, Machine Learning.

[19]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2013, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[21]  Zongben Xu,et al.  $L_{1/2}$ Regularization: A Thresholding Representation Theory and a Fast Solver , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[22]  Johan Håstad Tensor Rank is NP-Complete , 1990, J. Algorithms.

[23]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[24]  Shiqian Ma,et al.  Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..

[25]  Yong-Jin Liu,et al.  An implementable proximal point algorithmic framework for nuclear norm minimization , 2012, Math. Program..

[26]  Ryota Tomioka,et al.  Estimation of low-rank tensors via convex optimization , 2010, 1010.0789.

[27]  Xiaoming Yuan,et al.  Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations , 2011, SIAM J. Optim..

[28]  Michael W. Berry,et al.  Large-Scale Sparse Singular Value Computations , 1992 .

[29]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[30]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[31]  Lieven Vandenberghe,et al.  Interior-Point Method for Nuclear Norm Approximation with Application to System Identification , 2009, SIAM J. Matrix Anal. Appl..

[32]  Johan A. K. Suykens,et al.  Tensor Versus Matrix Completion: A Comparison With Application to Spectral Data , 2011, IEEE Signal Processing Letters.

[33]  Christopher Rasmussen,et al.  Spatiotemporal Inpainting for Recovering Texture Maps of Occluded Building Facades , 2007, IEEE Transactions on Image Processing.

[34]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[35]  Hisashi Kashima,et al.  Statistical Performance of Convex Tensor Decomposition , 2011, NIPS.

[36]  Stephen P. Boyd,et al.  A rank minimization heuristic with application to minimum order system approximation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[37]  Ying Zhang,et al.  Restricted $p$ -Isometry Properties of Nonconvex Matrix Recovery , 2013, IEEE Transactions on Information Theory.

[38]  J. Suykens,et al.  Nuclear Norms for Tensors and Their Use for Convex Multilinear Estimation , 2011 .

[39]  Benjamin Recht,et al.  A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..