Application of operator splitting methods in finance

Financial derivatives pricing aims to find the fair value of a financial contract on an underlying asset. Here we consider option pricing in the partial differential equations framework. The contemporary models lead to one-dimensional or multidimensional parabolic problems of the convection-diffusion type and generalizations thereof. An overview of various operator splitting methods is presented for the efficient numerical solution of these problems. Splitting schemes of the Alternating Direction Implicit (ADI) type are discussed for multidimensional problems, e.g. given by stochastic volatility (SV) models. For jump models Implicit-Explicit (IMEX) methods are considered which efficiently treat the nonlocal jump operator. For American options an easy-to-implement operator splitting method is described for the resulting linear complementarity problems. Numerical experiments are presented to illustrate the actual stability and convergence of the splitting schemes. Here European and American put options are considered under four asset price models: the classical Black-Scholes model, the Merton jump-diffusion model, the Heston SV model, and the Bates SV model with jumps.

[1]  Sean McKee,et al.  An Alternating Direction Implicit Scheme for Parabolic Equations with Mixed Derivative and Convective Terms , 1996 .

[2]  Kenneth R. Jackson,et al.  A PDE Pricing Framework for Cross-Currency Interest Rate Derivatives , 2009 .

[3]  Jari Toivanen,et al.  COMPONENTWISE SPLITTING METHODS FOR PRICING AMERICAN OPTIONS UNDER STOCHASTIC VOLATILITY , 2007 .

[4]  Tinne Haentjens,et al.  Alternating direction implicit finite difference schemes for the Heston-Hull-White partial differential equation , 2012 .

[5]  O. Pironneau,et al.  Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .

[6]  Jari Toivanen A Componentwise Splitting Method for Pricing American Options Under the Bates Model , 2010 .

[7]  Peter A. Forsyth,et al.  Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..

[8]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[9]  Jari Toivanen,et al.  Operator splitting methods for American option pricing , 2004, Appl. Math. Lett..

[10]  Tinne Haentjens Efficient and stable numerical solution of the Heston–Cox–Ingersoll–Ross partial differential equation by alternating direction implicit finite difference schemes , 2013, Int. J. Comput. Math..

[11]  G. Russo,et al.  Implicit–explicit numerical schemes for jump–diffusion processes , 2007 .

[12]  Tinne Haentjens,et al.  ADI Schemes for Pricing American Options under the Heston Model , 2015 .

[13]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[14]  S. Shreve Stochastic calculus for finance , 2004 .

[15]  K. Manjunatha,et al.  Derivatives , 2006 .

[16]  Roland Glowinski,et al.  Splitting Methods for the Numerical Solution of the Incompressible Navier-Stokes Equations. , 1984 .

[17]  Jari Toivanen,et al.  IMEX schemes for pricing options under jump-diffusion models , 2014 .

[18]  Leif Andersen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .

[19]  Jari Toivanen,et al.  Numerical Valuation of European and American Options under Kou's Jump-Diffusion Model , 2008, SIAM J. Sci. Comput..

[20]  Jari Toivanen Finite Difference Methods for Early Exercise Options , 2010 .

[21]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[22]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[23]  Bruno Welfert,et al.  Unconditional stability of second-order ADI schemes applied to multi-dimensional diffusion equations with mixed derivative terms , 2009 .

[24]  Andrew R. Mitchell,et al.  Alternating Direction Methods for Parabolic Equations in Two Space Dimensions with a Mixed Derivative , 1970, Comput. J..

[25]  G. Marchuk Splitting and alternating direction methods , 1990 .

[26]  Frank Cuypers Tools for Computational Finance , 2003 .

[27]  Jari Toivanen,et al.  A Projected Algebraic Multigrid Method for Linear Complementarity Problems , 2011 .

[28]  Willem Hundsdorfer,et al.  A Second-Order Rosenbrock Method Applied to Photochemical Dispersion Problems , 1999, SIAM J. Sci. Comput..

[29]  J. Pang,et al.  Option Pricing and Linear Complementarity , 1998 .

[30]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[31]  S. Ikonen,et al.  Efficient numerical methods for pricing American options under stochastic volatility , 2008 .

[32]  Peter Carr,et al.  On the Numerical Evaluation of Option Prices in Jump Diffusion Processes , 2007 .

[33]  Iain J. Clark Foreign Exchange Option Pricing: A Practitioner's Guide , 2011 .

[34]  C. Oosterlee,et al.  Extension of Stochastic Volatility Equity Models with Hull-White Interest Rate Process , 2009 .

[35]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[36]  K. J. in’t Hout,et al.  Stability of the modified Craig-Sneyd scheme for two-dimensional convection-diffusion equations with mixed derivative term , 2010, Math. Comput. Simul..

[37]  Willem Hundsdorfer,et al.  Stability of implicit-explicit linear multistep methods , 1997 .

[38]  R. Schilling Financial Modelling with Jump Processes , 2005 .

[39]  Vadim Linetsky,et al.  Pricing Options in Jump-Diffusion Models: An Extrapolation Approach , 2008, Oper. Res..

[40]  Alan G. White,et al.  Pricing Interest-Rate-Derivative Securities , 1990 .

[41]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[42]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[43]  Rama Cont,et al.  A FINITE DIFFERENCE SCHEME FOR OPTION PRICING IN JUMP DIFFUSION AND EXPONENTIAL L , 2005 .

[44]  A. D. Sneyd,et al.  An alternating-direction implicit scheme for parabolic equations with mixed derivatives , 1988 .

[45]  Bruno Welfert,et al.  Stability of ADI schemes applied to convection-diffusion equations with mixed derivative terms , 2007 .

[46]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[47]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[48]  Tinne Haentjens ADI schemes for the efficient and stable numerical pricing of financial options via multidimensional partial differential equations , 2013 .

[49]  P. Forsyth,et al.  Robust numerical methods for contingent claims under jump diffusion processes , 2005 .

[50]  Jari Toivanen,et al.  Comparison and survey of finite difference methods for pricing American options under finite activity jump-diffusion models , 2012, Int. J. Comput. Math..

[51]  Jari Toivanen,et al.  Pricing American Options Using LU Decomposition , 2007 .

[52]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[53]  Kevin Parrott,et al.  Multigrid for American option pricing with stochastic volatility , 1999 .

[54]  Willem Hundsdorfer,et al.  Accuracy and stability of splitting with stabilizing corrections , 2002 .

[55]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[56]  Gabriel Wittum,et al.  On multigrid for anisotropic equations and variational inequalities “Pricing multi-dimensional European and American options” , 2004 .

[57]  Leif B. G. Andersen,et al.  Foundations and vanilla models , 2010 .

[58]  Jari Toivanen,et al.  Operator splitting methods for pricing American options under stochastic volatility , 2009, Numerische Mathematik.

[59]  Jari Toivanen,et al.  An Iterative Method for Pricing American Options Under Jump-Diffusion Models , 2011 .

[60]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[61]  S. McKee,et al.  Alternating Direction Methods for Parabolic Equations in Two Space Dimensions with a Mixed Derivative , 1970, Comput. J..

[62]  R. Rannacher Finite element solution of diffusion problems with irregular data , 1984 .

[63]  C. Cryer The Solution of a Quadratic Programming Problem Using Systematic Overrelaxation , 1971 .

[64]  Eduardo S. Schwartz,et al.  The Valuation of American Put Options , 1977 .

[65]  K. Stuben,et al.  Algebraic Multigrid (AMG) : An Introduction With Applications , 2000 .

[66]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[67]  Younhee Lee,et al.  A Second-Order Tridiagonal Method for American Options under Jump-Diffusion Models , 2011, SIAM J. Sci. Comput..

[68]  K. J. in 't Hout,et al.  Stability of ADI schemes for multidimensional diffusion equations with mixed derivative terms , 2012 .

[69]  Younhee Lee,et al.  A Second-order Finite Difference Method for Option Pricing Under Jump-diffusion Models , 2011, SIAM J. Numer. Anal..

[70]  J. Brandts [Review of: W. Hundsdorfer, J.G. Verwer (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations] , 2006 .

[71]  A. Lipton Mathematical methods for foreign exchange , 2001 .

[72]  Cornelis W. Oosterlee,et al.  Numerical valuation of options with jumps in the underlying , 2005 .

[73]  Curt Randall,et al.  Pricing Financial Instruments: The Finite Difference Method , 2000 .

[74]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[75]  A. Brandt,et al.  Multigrid Algorithms for the Solution of Linear Complementarity Problems Arising from Free Boundary Problems , 1983 .

[76]  Erik Ekström,et al.  The Black–Scholes equation in stochastic volatility models , 2010 .

[77]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[78]  D. Lamberton,et al.  Variational inequalities and the pricing of American options , 1990 .

[79]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[80]  Cornelis W. Oosterlee,et al.  On the Heston Model with Stochastic Interest Rates , 2010, SIAM J. Financial Math..

[81]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[82]  Cornelis W. Oosterlee,et al.  On multigrid for linear complementarity problems with application to American-style options. , 2003 .

[83]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[84]  K. I. '. Hout,et al.  ADI finite difference schemes for option pricing in the Heston model with correlation , 2008, 0811.3427.

[85]  Andrey Itkin,et al.  Jumps without tears: A new splitting technology for barrier options , 2011 .

[86]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .