Application of operator splitting methods in finance
暂无分享,去创建一个
[1] Sean McKee,et al. An Alternating Direction Implicit Scheme for Parabolic Equations with Mixed Derivative and Convective Terms , 1996 .
[2] Kenneth R. Jackson,et al. A PDE Pricing Framework for Cross-Currency Interest Rate Derivatives , 2009 .
[3] Jari Toivanen,et al. COMPONENTWISE SPLITTING METHODS FOR PRICING AMERICAN OPTIONS UNDER STOCHASTIC VOLATILITY , 2007 .
[4] Tinne Haentjens,et al. Alternating direction implicit finite difference schemes for the Heston-Hull-White partial differential equation , 2012 .
[5] O. Pironneau,et al. Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .
[6] Jari Toivanen. A Componentwise Splitting Method for Pricing American Options Under the Bates Model , 2010 .
[7] Peter A. Forsyth,et al. Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..
[8] M. Yor,et al. The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .
[9] Jari Toivanen,et al. Operator splitting methods for American option pricing , 2004, Appl. Math. Lett..
[10] Tinne Haentjens. Efficient and stable numerical solution of the Heston–Cox–Ingersoll–Ross partial differential equation by alternating direction implicit finite difference schemes , 2013, Int. J. Comput. Math..
[11] G. Russo,et al. Implicit–explicit numerical schemes for jump–diffusion processes , 2007 .
[12] Tinne Haentjens,et al. ADI Schemes for Pricing American Options under the Heston Model , 2015 .
[13] H. H. Rachford,et al. The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .
[14] S. Shreve. Stochastic calculus for finance , 2004 .
[15] K. Manjunatha,et al. Derivatives , 2006 .
[16] Roland Glowinski,et al. Splitting Methods for the Numerical Solution of the Incompressible Navier-Stokes Equations. , 1984 .
[17] Jari Toivanen,et al. IMEX schemes for pricing options under jump-diffusion models , 2014 .
[18] Leif Andersen,et al. Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .
[19] Jari Toivanen,et al. Numerical Valuation of European and American Options under Kou's Jump-Diffusion Model , 2008, SIAM J. Sci. Comput..
[20] Jari Toivanen. Finite Difference Methods for Early Exercise Options , 2010 .
[21] R. C. Merton,et al. Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.
[22] A. George. Nested Dissection of a Regular Finite Element Mesh , 1973 .
[23] Bruno Welfert,et al. Unconditional stability of second-order ADI schemes applied to multi-dimensional diffusion equations with mixed derivative terms , 2009 .
[24] Andrew R. Mitchell,et al. Alternating Direction Methods for Parabolic Equations in Two Space Dimensions with a Mixed Derivative , 1970, Comput. J..
[25] G. Marchuk. Splitting and alternating direction methods , 1990 .
[26] Frank Cuypers. Tools for Computational Finance , 2003 .
[27] Jari Toivanen,et al. A Projected Algebraic Multigrid Method for Linear Complementarity Problems , 2011 .
[28] Willem Hundsdorfer,et al. A Second-Order Rosenbrock Method Applied to Photochemical Dispersion Problems , 1999, SIAM J. Sci. Comput..
[29] J. Pang,et al. Option Pricing and Linear Complementarity , 1998 .
[30] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[31] S. Ikonen,et al. Efficient numerical methods for pricing American options under stochastic volatility , 2008 .
[32] Peter Carr,et al. On the Numerical Evaluation of Option Prices in Jump Diffusion Processes , 2007 .
[33] Iain J. Clark. Foreign Exchange Option Pricing: A Practitioner's Guide , 2011 .
[34] C. Oosterlee,et al. Extension of Stochastic Volatility Equity Models with Hull-White Interest Rate Process , 2009 .
[35] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[36] K. J. in’t Hout,et al. Stability of the modified Craig-Sneyd scheme for two-dimensional convection-diffusion equations with mixed derivative term , 2010, Math. Comput. Simul..
[37] Willem Hundsdorfer,et al. Stability of implicit-explicit linear multistep methods , 1997 .
[38] R. Schilling. Financial Modelling with Jump Processes , 2005 .
[39] Vadim Linetsky,et al. Pricing Options in Jump-Diffusion Models: An Extrapolation Approach , 2008, Oper. Res..
[40] Alan G. White,et al. Pricing Interest-Rate-Derivative Securities , 1990 .
[41] R. Glowinski,et al. Numerical Methods for Nonlinear Variational Problems , 1985 .
[42] Steven Kou,et al. A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..
[43] Rama Cont,et al. A FINITE DIFFERENCE SCHEME FOR OPTION PRICING IN JUMP DIFFUSION AND EXPONENTIAL L , 2005 .
[44] A. D. Sneyd,et al. An alternating-direction implicit scheme for parabolic equations with mixed derivatives , 1988 .
[45] Bruno Welfert,et al. Stability of ADI schemes applied to convection-diffusion equations with mixed derivative terms , 2007 .
[46] Timothy A. Davis,et al. Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.
[47] J. W. Ruge,et al. 4. Algebraic Multigrid , 1987 .
[48] Tinne Haentjens. ADI schemes for the efficient and stable numerical pricing of financial options via multidimensional partial differential equations , 2013 .
[49] P. Forsyth,et al. Robust numerical methods for contingent claims under jump diffusion processes , 2005 .
[50] Jari Toivanen,et al. Comparison and survey of finite difference methods for pricing American options under finite activity jump-diffusion models , 2012, Int. J. Comput. Math..
[51] Jari Toivanen,et al. Pricing American Options Using LU Decomposition , 2007 .
[52] David S. Bates. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .
[53] Kevin Parrott,et al. Multigrid for American option pricing with stochastic volatility , 1999 .
[54] Willem Hundsdorfer,et al. Accuracy and stability of splitting with stabilizing corrections , 2002 .
[55] J. Hull. Options, Futures, and Other Derivatives , 1989 .
[56] Gabriel Wittum,et al. On multigrid for anisotropic equations and variational inequalities “Pricing multi-dimensional European and American options” , 2004 .
[57] Leif B. G. Andersen,et al. Foundations and vanilla models , 2010 .
[58] Jari Toivanen,et al. Operator splitting methods for pricing American options under stochastic volatility , 2009, Numerische Mathematik.
[59] Jari Toivanen,et al. An Iterative Method for Pricing American Options Under Jump-Diffusion Models , 2011 .
[60] S. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .
[61] S. McKee,et al. Alternating Direction Methods for Parabolic Equations in Two Space Dimensions with a Mixed Derivative , 1970, Comput. J..
[62] R. Rannacher. Finite element solution of diffusion problems with irregular data , 1984 .
[63] C. Cryer. The Solution of a Quadratic Programming Problem Using Systematic Overrelaxation , 1971 .
[64] Eduardo S. Schwartz,et al. The Valuation of American Put Options , 1977 .
[65] K. Stuben,et al. Algebraic Multigrid (AMG) : An Introduction With Applications , 2000 .
[66] F. Black,et al. The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.
[67] Younhee Lee,et al. A Second-Order Tridiagonal Method for American Options under Jump-Diffusion Models , 2011, SIAM J. Sci. Comput..
[68] K. J. in 't Hout,et al. Stability of ADI schemes for multidimensional diffusion equations with mixed derivative terms , 2012 .
[69] Younhee Lee,et al. A Second-order Finite Difference Method for Option Pricing Under Jump-diffusion Models , 2011, SIAM J. Numer. Anal..
[70] J. Brandts. [Review of: W. Hundsdorfer, J.G. Verwer (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations] , 2006 .
[71] A. Lipton. Mathematical methods for foreign exchange , 2001 .
[72] Cornelis W. Oosterlee,et al. Numerical valuation of options with jumps in the underlying , 2005 .
[73] Curt Randall,et al. Pricing Financial Instruments: The Finite Difference Method , 2000 .
[74] H. H. Rachford,et al. On the numerical solution of heat conduction problems in two and three space variables , 1956 .
[75] A. Brandt,et al. Multigrid Algorithms for the Solution of Linear Complementarity Problems Arising from Free Boundary Problems , 1983 .
[76] Erik Ekström,et al. The Black–Scholes equation in stochastic volatility models , 2010 .
[77] R. C. Merton,et al. Option pricing when underlying stock returns are discontinuous , 1976 .
[78] D. Lamberton,et al. Variational inequalities and the pricing of American options , 1990 .
[79] S. B. Atienza-Samols,et al. With Contributions by , 1978 .
[80] Cornelis W. Oosterlee,et al. On the Heston Model with Stochastic Interest Rates , 2010, SIAM J. Financial Math..
[81] A. Chorin. Numerical solution of the Navier-Stokes equations , 1968 .
[82] Cornelis W. Oosterlee,et al. On multigrid for linear complementarity problems with application to American-style options. , 2003 .
[83] J. Verwer,et al. Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .
[84] K. I. '. Hout,et al. ADI finite difference schemes for option pricing in the Heston model with correlation , 2008, 0811.3427.
[85] Andrey Itkin,et al. Jumps without tears: A new splitting technology for barrier options , 2011 .
[86] R. Cont,et al. Financial Modelling with Jump Processes , 2003 .