A new epsilon-dominance hierarchical Bayesian optimization algorithm for large multiobjective monitoring network design problems

Abstract This study focuses on the development of a next generation multiobjective evolutionary algorithm (MOEA) that can learn and exploit complex interdependencies and/or correlations between decision variables in monitoring design applications to provide more robust performance for large problems (defined in terms of both the number of objectives and decision variables). The proposed MOEA is termed the epsilon-dominance hierarchical Bayesian optimization algorithm ( e -hBOA), which is representative of a new class of probabilistic model building evolutionary algorithms. The e -hBOA has been tested relative to a top-performing traditional MOEA, the epsilon-dominance nondominated sorted genetic algorithm II ( e -NSGAII) for solving a four-objective LTM design problem. A comprehensive performance assessment of the e -NSGAII and various configurations of the e -hBOA have been performed for both a 25 well LTM design test case (representing a relatively small problem with over 33 million possible designs), and a 58 point LTM design test case (with over 2.88 × 10 17 possible designs). The results from this comparison indicate that the model building capability of the e -hBOA greatly enhances its performance relative to the e -NSGAII, especially for large monitoring design problems. This work also indicates that decision variable interdependencies appear to have a significant impact on the overall mathematical difficulty of the monitoring network design problem.

[1]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[2]  Fernando G. Lobo,et al.  A parameter-less genetic algorithm , 1999, GECCO.

[3]  Patrick M. Reed,et al.  Using interactive archives in evolutionary multiobjective optimization: A case study for long-term groundwater monitoring design , 2007, Environ. Model. Softw..

[4]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[5]  Patrick M. Reed,et al.  A Framework for Visually Interactive Decision-Making and Design Using Evolutionary Multiobjective Optimization (VIDEO) , 2007 .

[6]  David E. Goldberg,et al.  Multiobjective hBOA, clustering, and scalability , 2005, GECCO '05.

[7]  James Kennedy,et al.  Proceedings of the 1998 IEEE International Conference on Evolutionary Computation [Book Review] , 1999, IEEE Transactions on Evolutionary Computation.

[8]  Maria da Conceição Cunha,et al.  Groundwater Monitoring Network Optimization with Redundancy Reduction , 2004 .

[9]  Dennis P. Lettenmaier Dimensionality problems in water quality network design , 1979 .

[10]  Kalyanmoy Deb,et al.  Running performance metrics for evolutionary multi-objective optimizations , 2002 .

[11]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[12]  David E. Goldberg,et al.  Designing a competent simple genetic algorithm for search and optimization , 2000 .

[13]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[14]  Patrick M. Reed,et al.  Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design , 2005 .

[15]  A. Bárdossy,et al.  Multicriterion Network Design Using Geostatistics , 1985 .

[16]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[17]  Dennis McLaughlin,et al.  Stochastic analysis of nonstationary subsurface solute transport: 1. Unconditional moments , 1989 .

[18]  David E. Goldberg,et al.  Sporadic model building for efficiency enhancement of hierarchical BOA , 2006, GECCO '06.

[19]  Patrick M. Reed,et al.  How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration , 2005 .

[20]  B. Minsker,et al.  Spatial Interpolation Methods for Nonstationary Plume Data , 2004, Ground water.

[21]  L M Nunes,et al.  Optimal Space-time Coverage and Exploration Costs in Groundwater Monitoring Networks , 2004, Environmental monitoring and assessment.

[22]  J. Eheart,et al.  Using Genetic Algorithms to Solve a Multiobjective Groundwater Monitoring Problem , 1995 .

[23]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1998, Learning in Graphical Models.

[24]  David E. Goldberg,et al.  The gambler''s ruin problem , 1997 .

[25]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[26]  Steven F. Carle,et al.  Connected-network paradigm for the alluvial aquifer system , 2000 .

[27]  D. Goldberg,et al.  A multiobjective approach to cost effective long-term groundwater monitoring using an elitist nondominated sorted genetic algorithm with historical data , 2001 .

[28]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[29]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[30]  Martin V. Butz,et al.  Performance of Evolutionary Algorithms on Random Decomposable Problems , 2006, PPSN.

[31]  Yong Tang,et al.  Parallelization strategies for rapid and robust evolutionary multiobjective optimization in water resources applications , 2007 .

[32]  Kalyanmoy Deb,et al.  A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization , 2002, Evolutionary Computation.

[33]  R. Olea Geostatistics for Natural Resources Evaluation By Pierre Goovaerts, Oxford University Press, Applied Geostatistics Series, 1997, 483 p., hardcover, $65 (U.S.), ISBN 0-19-511538-4 , 1999 .

[34]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[35]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[36]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[37]  Jianfeng Wu,et al.  Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions. , 2005, Journal of contaminant hydrology.

[38]  Steven F. Carle,et al.  Contamination, risk, and heterogeneity: on the effectiveness of aquifer remediation , 2008 .

[39]  Martin Pelikan,et al.  Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms , 2010, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).

[40]  N. Sloane,et al.  Acyclic Digraphs and Eigenvalues of O,1 Matrices , 2003, math/0310423.

[41]  D. Goldberg,et al.  Domino convergence, drift, and the temporal-salience structure of problems , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[42]  S. Gorelick,et al.  When enough is enough: The worth of monitoring data in aquifer remediation design , 1994 .

[43]  Steven F. Carle,et al.  Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting , 1998 .

[44]  Barbara S. Minsker,et al.  Optimal groundwater remediation design using an Adaptive Neural Network Genetic Algorithm , 2006 .

[45]  David E. Goldberg,et al.  Multi-objective bayesian optimization algorithm , 2002 .

[46]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[47]  Patrick M. Reed,et al.  The Value of Online Adaptive Search: A Performance Comparison of NSGAII, epsilon-NSGAII and epsilonMOEA , 2005, EMO.

[48]  Patrick M. Reed,et al.  Parallel Evolutionary Multi-Objective Optimization on Large, Heterogeneous Clusters: An Applications Perspective , 2008, J. Aerosp. Comput. Inf. Commun..

[49]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[50]  M. F. Fuller,et al.  Practical Nonparametric Statistics; Nonparametric Statistical Inference , 1973 .

[51]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[52]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[53]  David E. Goldberg,et al.  Bayesian Optimization Algorithm: From Single Level to Hierarchy , 2002 .

[54]  Martin Pelikan,et al.  Hierarchical BOA, Cluster Exact Approximation, and Ising Spin Glasses , 2006, PPSN.

[55]  Ralf Salomon,et al.  Evolutionary algorithms and gradient search: similarities and differences , 1998, IEEE Trans. Evol. Comput..

[56]  Patrick M. Reed,et al.  Striking the Balance: Long-Term Groundwater Monitoring Design for Conflicting Objectives , 2004 .

[57]  D. McLaughlin,et al.  Stochastic analysis of nonstationary subsurface solute transport: 2. Conditional moments , 1989 .

[58]  B. Minsker,et al.  Cost‐effective long‐term groundwater monitoring design using a genetic algorithm and global mass interpolation , 2000 .

[59]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[60]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[61]  Patrick M. Reed,et al.  A framework for Visually Interactive Decision-making and Design using Evolutionary Multi-objective Optimization (VIDEO) , 2007, Environ. Model. Softw..

[62]  Brian J. Wagner,et al.  Sampling Design Methods For Groundwater Modeling Under Uncertainty , 1995 .

[63]  Albert J. Valocchi,et al.  A method for the optimal location of monitoring wells for detection of groundwater contamination in three‐dimensional heterogenous aquifers , 1997 .

[64]  Clifford I. Voss,et al.  Sampling design for groundwater solute transport: Tests of methods and analysis of Cape Cod tracer test data , 1991 .

[65]  P. Reed,et al.  A computational scaling analysis of multiobjective evolutionary algorithms in long-term groundwater monitoring applications , 2007 .

[66]  David E. Goldberg,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1999, Evolutionary Computation.

[67]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[68]  N. Sun Inverse problems in groundwater modeling , 1994 .

[70]  M. Pelikán,et al.  The Bivariate Marginal Distribution Algorithm , 1999 .

[71]  J. Eheart,et al.  Monitoring network design to provide initial detection of groundwater contamination , 1994 .

[72]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[73]  Clifford I. Voss,et al.  Multiobjective sampling design for parameter estimation and model discrimination in groundwater solute transport , 1989 .

[74]  David E. Goldberg,et al.  Hierarchical BOA Solves Ising Spin Glasses and MAXSAT , 2003, GECCO.